
CSC	262	Operating	Systems	Course	
Final	Project	Requirements	
	
Multi	Threaded	Web	Server	with	an	Admin	Console	
	
Objectives	
There are four objectives to this assignment:
• To modify an existing code base in Java
• To learn how to create and synchronize cooperating threads in Java.
• To gain exposure to how a basic web server is structured.
• To think more about how to test the functionality of a code base.

Starting	Point	
In this assignment, you will be developing a real, working web server. To greatly simplify this
project, we are providing you with the code for a very basic web server. This basic web server
operates with only a single thread; it will be your job to make the web server multi-threaded so
that it is more efficient.

Background	
HTTP (hyper text transfer protocol) is the main protocol between web servers and web browsers.
HTTP functions as a request–response protocol in the client–server computing model. A web
browser, for example, may be the client and an application running on a computer hosting a
website may be the server. The client submits an HTTP request message to the server. The
server, which provides resources such as HTML files and other content, or performs other
functions on behalf of the client, returns a response message to the client. The response contains
completion status information about the request and may also contain requested content in its
message body.
A web browser is an example of a user agent (UA). Other types of user agent include the
indexing software used by search providers (web crawlers), voice browsers, mobile apps, and
other software that accesses, consumes, or displays web content.
HTTP is designed to permit intermediate network elements to improve or enable communications
between clients and servers. High-traffic websites often benefit from web cache servers that
deliver content on behalf of upstream servers to improve response time. Web browsers cache
previously accessed web resources and reuse them when possible to reduce network traffic.
HTTP proxy servers at private network boundaries can facilitate communication for clients
without a globally routable address, by relaying messages with external servers.
HTTP is an application layer protocol designed within the framework of the Internet protocol
suite. Its definition presumes an underlying and reliable transport layer protocol,[2] and
Transmission Control Protocol (TCP) is commonly used. However HTTP can be adapted to use
unreliable protocols such as the User Datagram Protocol (UDP), for example in HTTPU and
Simple Service Discovery Protocol (SSDP).
HTTP resources are identified and located on the network by Uniform Resource Locators
(URLs), using the Uniform Resource Identifiers (URI's) schemes http and https. URIs and
hyperlinks in HTML documents form inter-linked hypertext documents.
HTTP/1.1 is a revision of the original HTTP (HTTP/1.0). In HTTP/1.0 a separate connection to
the same server is made for every resource request. HTTP/1.1 can reuse a connection multiple
times to download images, scripts, stylesheets, etc after the page has been delivered. HTTP/1.1
communications therefore experience less latency as the establishment of TCP connections
presents considerable overhead.

Basic	Web	Server	Codes	
Codes are available at the web page of the course or you can simply download the codes from the
following link : http://sadievrenseker.com/wp/wp-content/uploads/2016/08/server.java_.zip
In the class, we have also covered the details of the coding and tested web server with the
browsers (like chrome or safari).

Status	Codes	
In the starting code parts, you will find the HTTP status codes. You can also check the full list of
codes from Wikipedia (https://en.wikipedia.org/wiki/List_of_HTTP_status_codes)

Requirements	
The project can be divided into two major parts:

1. Administrator console interface
2. Web Server Functionalities

An overview of the system can be demonstrated as below figure

Your server will support multiple connections from the clients. Each client connection request
will be handled with a separate thread on the server. Also there will be a command line interface
(CLI) for the administrative commands and a separate thread will handle the request.
You can use web browsers, or you can implement your own client in Java.

Admin CLI Requirements:

1. Starting server : You can use a simple command like “start”, to start the server and
accepting new connections from the clients

2. Shutting down: You can use another command like “shutdown” to stop the server. In
order stop server, you must be careful about stopping all active threads.

3. Listing active connections (optional but would be required for debugging your code): just
dump all the active server threads and some details about them for debugging.

Multi Threaded Server Requirements:
1. You must provide a thread for each active connections
2. Serve the requested file from the file system of the server.
3. Keep connection active until client requests a close
4. Use the communication through HTTP (already provided some source codes)

Optional Implementation (strongly suggested): Write your own client with own command sets.
You can also use a browser, like chrome or safari but this will make coding on the server side a
little bit more complex.

Submissions	
For each of the project phases, please provide first two items below. For the final project
submission you should also demonstrate the last item in the list.

• Return the source codes you have implemented for the project
• Write a brief report about your implementation details, your assumptions (if you did any)
• Demonstrate your project a running scenario, with more than 3 connection request at least

at the same time and their views on the server. You need to find a way of demonstration
(like the “list” command from the admin CLI)

Project	Phases	

Project Phase #1 : Writing multi threaded server: Modify the web server code provided in the lab
session. The new version of the server will accept multiple connection requests at the same time.

Project Phase #2: Provide a level of synchronization. You have a multi threaded server from the
first phase. Now consider both clients are trying to read the same file and you can allow only 1
access at a time. Provide a synchronization for such a case

Project Phase #3: Implement the administrator module with the requirements above.

