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Chapter 8. Classification (Sınıflandırma) 

n  Sınıflandırmaya	Giriş	

n  K-NN	Algoritması	

n  Karar	Ağaçları	(Decision	Trees)	

n  Bayes	Sınıflandırma	Yöntemi	

n  Kural	Tabanlı	Sınıflandırmalar	(Rule-based	ClassificaGon)	

n  Doğru	Modelin	seçilmesi	

n  Başarıyı	arIran	bazı	yöntemler	(Ensemble	Techniques)	
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Supervised vs. Unsupervised Learning 
(Gözetimli ve Gözetimsiz Öğrenme) 

n  Supervised	learning	(classificaGon)	

n  Supervision:	The	training	data	(observaGons,	
measurements,	etc.)	are	accompanied	by	labels	indicaGng	

the	class	of	the	observaGons	

n  New	data	is	classified	based	on	the	training	set	

n  Unsupervised	learning	(clustering)	

n  The	class	labels	of	training	data	is	unknown	

n  Given	a	set	of	measurements,	observaGons,	etc.	with	the	
aim	of	establishing	the	existence	of	classes	or	clusters	in	
the	data	
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n  ClassificaGon			
n  predicts	categorical	class	labels	(discrete	or	nominal)	
n  classifies	data	(constructs	a	model)	based	on	the	training	
set	and	the	values	(class	labels)	in	a	classifying	aXribute	
and	uses	it	in	classifying	new	data	

n  Numeric	PredicGon			
n  models	conGnuous-valued	funcGons,	i.e.,	predicts	unknown	
or	missing	values		

n  Typical	applicaGons	
n  Credit/loan	approval:	
n  Medical	diagnosis:	if	a	tumor	is	cancerous	or	benign	
n  Fraud	detecGon:	if	a	transacGon	is	fraudulent	
n  Web	page	categorizaGon:	which	category	it	is	

Prediction Problems: Classification vs. 
Numeric Prediction 
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Classification—A Two-Step 
Process  

n  Model	construcGon:	describing	a	set	of	predetermined	classes	
n  Each	tuple/sample	is	assumed	to	belong	to	a	predefined	class,	as	

determined	by	the	class	label	aXribute	
n  The	set	of	tuples	used	for	model	construcGon	is	training	set	
n  The	model	is	represented	as	classificaGon	rules,	decision	trees,	or	

mathemaGcal	formulae	
n  Model	usage:	for	classifying	future	or	unknown	objects	

n  EsGmate	accuracy	of	the	model	
n  The	known	label	of	test	sample	is	compared	with	the	classified	
result	from	the	model	

n  Accuracy	rate	is	the	percentage	of	test	set	samples	that	are	
correctly	classified	by	the	model	

n  Test	set	is	independent	of	training	set	(otherwise	overfi^ng)		
n  If	the	accuracy	is	acceptable,	use	the	model	to	classify	new	data	

n  Note:	If	the	test	set	is	used	to	select	models,	it	is	called	validaGon	(test)	set	
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Process (1): Model Construction 

Training 
Data 

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification 
Algorithms 

IF rank = ‘professor’ 
OR years > 6 
THEN tenured = ‘yes’  

Classifier 
(Model) 
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Process (2): Using the Model in 
Prediction  

Classifier 

Testing 
Data 

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data 

(Jeff, Professor, 4) 

Tenured? 
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Chapter 8. Classification: Basic 
Concepts 

n  ClassificaGon:	Basic	Concepts	

n  Decision	Tree	InducGon	

n  Bayes	ClassificaGon	Methods	

n  Rule-Based	ClassificaGon	

n  Model	EvaluaGon	and	SelecGon	

n  Techniques	to	Improve	ClassificaGon	Accuracy:	
Ensemble	Methods	

n  Summary	
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Decision Tree Induction: An Example 

age? 

overcast 

student? credit rating? 

<=30 >40 

no yes yes 

yes 

31..40 

no 

fair excellent yes no 

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

q  Training	data	set:	Buys_computer	
q  The	data	set	follows	an	example	of	
Quinlan’s	ID3	(Playing	Tennis)	

q  ResulGng	tree:	
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Algorithm for Decision Tree Induction 
n  Basic	algorithm	(a	greedy	algorithm)	

n  Tree	is	constructed	in	a	top-down	recursive	divide-and-
conquer	manner	

n  At	start,	all	the	training	examples	are	at	the	root	
n  AXributes	are	categorical	(if	conGnuous-valued,	they	are	
discreGzed	in	advance)	

n  Examples	are	parGGoned	recursively	based	on	selected	
aXributes	

n  Test	aXributes	are	selected	on	the	basis	of	a	heurisGc	or	
staGsGcal	measure	(e.g.,	informaGon	gain)	

n  CondiGons	for	stopping	parGGoning	
n  All	samples	for	a	given	node	belong	to	the	same	class	
n  There	are	no	remaining	aXributes	for	further	parGGoning	–	
majority	voGng	is	employed	for	classifying	the	leaf	

n  There	are	no	samples	led	



Brief Review of Entropy 

n 

12 

m = 2 
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Attribute Selection Measure: 
Information Gain (ID3/C4.5) 

n  Select	the	aXribute	with	the	highest	informaGon	gain	
n  Let	pi	be	the	probability	that	an	arbitrary	tuple	in	D	belongs	to	

class	Ci,	esGmated	by	|Ci,	D|/|D|	
n  Expected	informaGon	(entropy)	needed	to	classify	a	tuple	in	D:	

n  InformaGon	needed	(ader	using	A	to	split	D	into	v	parGGons)	to	
classify	D:	

n  InformaGon	gained	by	branching	on	aXribute	A	
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Attribute Selection: Information Gain 

g  Class	P:	buys_computer	=	“yes”	
g  Class	N:	buys_computer	=	“no”	

												means	“age	<=30”	has	5	out	of	
14	samples,	with	2	yes’es		and	3	
no’s.			Hence	

	
	
Similarly,	

age pi ni I(pi, ni)
<=30 2 3 0.971
31…40 4 0 0
>40 3 2 0.971
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<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Computing Information-Gain for 
Continuous-Valued Attributes 

n  Let	aXribute	A	be	a	conGnuous-valued	aXribute	

n  Must	determine	the	best	split	point	for	A	

n  Sort	the	value	A	in	increasing	order	

n  Typically,	the	midpoint	between	each	pair	of	adjacent	values	
is	considered	as	a	possible	split	point	

n  (ai+ai+1)/2	is	the	midpoint	between	the	values	of	ai	and	ai+1	

n  The	point	with	the	minimum	expected	informa4on	
requirement	for	A	is	selected	as	the	split-point	for	A	

n  Split:	

n  D1	is	the	set	of	tuples	in	D	saGsfying	A	≤	split-point,	and	D2	is	
the	set	of	tuples	in	D	saGsfying	A	>	split-point	
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Gain Ratio for Attribute Selection 
(C4.5) 

n  InformaGon	gain	measure	is	biased	towards	aXributes	with	a	
large	number	of	values	

n  C4.5	(a	successor	of	ID3)	uses	gain	raGo	to	overcome	the	
problem	(normalizaGon	to	informaGon	gain)	

n  GainRaGo(A)	=	Gain(A)/SplitInfo(A)	
n  Ex.	

n  gain_raGo(income)	=	0.029/1.557	=	0.019	
n  The	aXribute	with	the	maximum	gain	raGo	is	selected	as	the	

spli^ng	aXribute	

)
||
||

(log
||
||

)( 2
1 D

D
D
D

DSplitInfo j
v

j

j
A ×−= ∑

=



17 

Gini Index (CART, IBM IntelligentMiner) 

n  If	a	data	set	D	contains	examples	from	n	classes,	gini	index,	
gini(D)	is	defined	as	

					 	where	pj	is	the	relaGve	frequency	of	class	j	in	D	
n  If	a	data	set	D		is	split	on	A	into	two	subsets	D1	and	D2,	the	gini	

index	gini(D)	is	defined	as	

n  ReducGon	in	Impurity:	

n  The	aXribute	provides	the	smallest	ginisplit(D)	(or	the	largest	
reducGon	in	impurity)	is	chosen	to	split	the	node	(need	to	
enumerate	all	the	possible	spli;ng	points	for	each	a<ribute)	
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Computation of Gini Index  

n  Ex.		D	has	9	tuples	in	buys_computer	=	“yes”	and	5	in	“no”	

n  Suppose	the	aXribute	income	parGGons	D	into	10	in	D1:	{low,	
medium}	and	4	in	D2	

	Gini{low,high}	is	0.458;	Gini{medium,high}	is	0.450.		Thus,	split	on	the	
{low,medium}	(and	{high})	since	it	has	the	lowest	Gini	index	

n  All	aXributes	are	assumed	conGnuous-valued	
n  May	need	other	tools,	e.g.,	clustering,	to	get	the	possible	split	

values	
n  Can	be	modified	for	categorical	aXributes	
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Comparing Attribute Selection Measures 

n  The	three	measures,	in	general,	return	good	results	but	
n  Informa/on	gain:		

n  biased	towards	mulGvalued	aXributes	
n  Gain	ra/o:		

n  tends	to	prefer	unbalanced	splits	in	which	one	parGGon	is	
much	smaller	than	the	others	

n  Gini	index:		
n  biased	to	mulGvalued	aXributes	

n  has	difficulty	when	#	of	classes	is	large	
n  tends	to	favor	tests	that	result	in	equal-sized	parGGons	
and	purity	in	both	parGGons	
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Other Attribute Selection Measures 

n  CHAID:	a	popular	decision	tree	algorithm,	measure	based	on	χ2	test	for	
independence	

n  C-SEP:	performs	beXer	than	info.	gain	and	gini	index	in	certain	cases	

n  G-staGsGc:	has	a	close	approximaGon	to	χ2	distribuGon		

n  MDL	(Minimal	DescripGon	Length)	principle	(i.e.,	the	simplest	soluGon	is	
preferred):		

n  The	best	tree	as	the	one	that	requires	the	fewest	#	of	bits	to	both	(1)	
encode	the	tree,	and	(2)	encode	the	excepGons	to	the	tree	

n  MulGvariate	splits	(parGGon	based	on	mulGple	variable	combinaGons)	

n  CART:	finds	mulGvariate	splits	based	on	a	linear	comb.	of	aXrs.	

n  Which	aXribute	selecGon	measure	is	the	best?	

n  	Most	give	good	results,	none	is	significantly	superior	than	others	
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Overfitting and Tree Pruning 

n  Overfi^ng:		An	induced	tree	may	overfit	the	training	data		
n  Too	many	branches,	some	may	reflect	anomalies	due	to	
noise	or	outliers	

n  Poor	accuracy	for	unseen	samples	
n  Two	approaches	to	avoid	overfi^ng		

n  Prepruning:	Halt	tree	construc4on	early	̵	do	not	split	a	node	
if	this	would	result	in	the	goodness	measure	falling	below	a	
threshold	

n  Difficult	to	choose	an	appropriate	threshold	
n  Postpruning:	Remove	branches	from	a	“fully	grown”	tree—
get	a	sequence	of	progressively	pruned	trees	

n  Use	a	set	of	data	different	from	the	training	data	to	
decide	which	is	the	“best	pruned	tree”	
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Enhancements to Basic Decision Tree 
Induction 

n  Allow	for	con/nuous-valued	a9ributes	
n  Dynamically	define	new	discrete-valued	aXributes	that	
parGGon	the	conGnuous	aXribute	value	into	a	discrete	set	of	
intervals	

n  Handle	missing	a9ribute	values	
n  Assign	the	most	common	value	of	the	aXribute	

n  Assign	probability	to	each	of	the	possible	values	
n  A9ribute	construc/on	

n  Create	new	aXributes	based	on	exisGng	ones	that	are	
sparsely	represented	

n  This	reduces	fragmentaGon,	repeGGon,	and	replicaGon	
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Classification in Large Databases 

n  ClassificaGon—a	classical	problem	extensively	studied	by	
staGsGcians	and	machine	learning	researchers	

n  Scalability:	Classifying	data	sets	with	millions	of	examples	and	
hundreds	of	aXributes	with	reasonable	speed	

n  Why	is	decision	tree	inducGon	popular?	
n  relaGvely	faster	learning	speed	(than	other	classificaGon	
methods)	

n  converGble	to	simple	and	easy	to	understand	classificaGon	
rules	

n  can	use	SQL	queries	for	accessing	databases	
n  comparable	classificaGon	accuracy	with	other	methods	

n  RainForest	(VLDB’98	—	Gehrke,	Ramakrishnan	&	GanG)	
n  Builds	an	AVC-list	(aXribute,	value,	class	label)	
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Scalability Framework for 
RainForest 

n  Separates the scalability aspects from the criteria that 
determine the quality of the tree  

n  Builds an AVC-list: AVC (Attribute, Value, Class_label)  

n  AVC-set  (of an attribute X ) 

n  Projection of training dataset onto the attribute X and 
class label where counts of individual class label are 
aggregated 

n  AVC-group  (of a node n ) 

n  Set of AVC-sets of all predictor attributes at the node n  
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Rainforest:  Training Set and Its AVC 
Sets  

student Buy_Computer 

yes no 

yes 6 1 

no 3 4 

Age Buy_Computer 

yes no 

<=30 2 3 

31..40 4 0 

>40 3 2 

Credit 
rating 

Buy_Computer 

yes no 

fair 6 2 

excellent 3 3 

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

AVC-set on income AVC-set on Age 

AVC-set on Student 

Training Examples 
income Buy_Computer 

yes no 

high 2 2 

medium 4 2 

low 3 1 

AVC-set on  
credit_rating 
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BOAT (Bootstrapped Optimistic 
Algorithm for Tree Construction) 

n  Use a statistical technique called bootstrapping to create 
several smaller samples (subsets), each fits in memory 

n  Each subset is used to create a tree, resulting in several 
trees  

n  These trees are examined and used to construct a new 
tree T’ 

n  It turns out that T’ is very close to the tree that would 
be generated using the whole data set together 

n  Adv: requires only two scans of DB, an incremental alg. 
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Presentation of Classification Results 
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Visualization of a Decision Tree in SGI/
MineSet 3.0 
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Interactive Visual Mining by 
Perception-Based Classification (PBC) 
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Chapter 8. Classification: Basic 
Concepts 

n  ClassificaGon:	Basic	Concepts	

n  Decision	Tree	InducGon	

n  Bayes	ClassificaGon	Methods	

n  Rule-Based	ClassificaGon	

n  Model	EvaluaGon	and	SelecGon	

n  Techniques	to	Improve	ClassificaGon	Accuracy:	
Ensemble	Methods	

n  Summary	
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Bayesian Classification: Why? 

n  A	staGsGcal	classifier:	performs	probabilis4c	predic4on,	i.e.,	
predicts	class	membership	probabiliGes	

n  FoundaGon:	Based	on	Bayes’	Theorem.		
n  Performance:	A	simple	Bayesian	classifier,	naïve	Bayesian	

classifier,	has	comparable	performance	with	decision	tree	and	
selected	neural	network	classifiers	

n  Incremental:	Each	training	example	can	incrementally	increase/
decrease	the	probability	that	a	hypothesis	is	correct	—	prior	
knowledge	can	be	combined	with	observed	data	

n  Standard:	Even	when	Bayesian	methods	are	computaGonally	
intractable,	they	can	provide	a	standard	of	opGmal	decision	
making	against	which	other	methods	can	be	measured	
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Bayes’ Theorem: Basics 
n  Total	probability	Theorem:	

n  Bayes’	Theorem:	

n  Let	X	be	a	data	sample	(“evidence”):	class	label	is	unknown	
n  Let	H	be	a	hypothesis	that	X	belongs	to	class	C		
n  ClassificaGon	is	to	determine	P(H|X),	(i.e.,	posteriori	probability):		the	

probability	that	the	hypothesis	holds	given	the	observed	data	sample	X	
n  P(H)	(prior	probability):	the	iniGal	probability	

n  E.g.,	X	will	buy	computer,	regardless	of	age,	income,	…	
n  P(X):	probability	that	sample	data	is	observed	
n  P(X|H)	(likelihood):	the	probability	of	observing	the	sample	X,	given	that	

the	hypothesis	holds	
n  E.g.,	Given	that	X	will	buy	computer,	the	prob.	that	X	is	31..40,	
medium	income	
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Prediction Based on Bayes’ Theorem 

n  Given	training	data	X,	posteriori	probability	of	a	hypothesis	H,	
P(H|X),	follows	the	Bayes’	theorem	

	 	 		

n  Informally,	this	can	be	viewed	as		

	 	posteriori	=	likelihood	x	prior/evidence	

n  Predicts	X	belongs	to	Ci	iff	the	probability	P(Ci|X)	is	the	highest	
among	all	the	P(Ck|X)	for	all	the	k	classes	

n  PracGcal	difficulty:		It	requires	iniGal	knowledge	of	many	
probabiliGes,	involving	significant	computaGonal	cost	
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Classification Is to Derive the Maximum 
Posteriori 

n  Let	D	be	a	training	set	of	tuples	and	their	associated	class	
labels,	and	each	tuple	is	represented	by	an	n-D	aXribute	vector	
X	=	(x1,	x2,	…,	xn)	

n  Suppose	there	are	m	classes	C1,	C2,	…,	Cm.	
n  ClassificaGon	is	to	derive	the	maximum	posteriori,	i.e.,	the	

maximal	P(Ci|X)	
n  This	can	be	derived	from	Bayes’	theorem	

n  Since	P(X)	is	constant	for	all	classes,	only																																									

needs	to	be	maximized	
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Naïve Bayes Classifier  

n  A	simplified	assumpGon:	aXributes	are	condiGonally	
independent	(i.e.,	no	dependence	relaGon	between	aXributes):	

n  This	greatly	reduces	the	computaGon	cost:	Only	counts	the	
class	distribuGon	

n  If	Ak	is	categorical,	P(xk|Ci)	is	the	#	of	tuples	in	Ci	having	value	xk	
for	Ak	divided	by	|Ci,	D|	(#	of	tuples	of	Ci	in	D)	

n  If	Ak	is	conGnous-valued,	P(xk|Ci)	is	usually	computed	based	on	
Gaussian	distribuGon	with	a	mean	μ	and	standard	deviaGon	σ	

and	P(xk|Ci)	is		
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Naïve Bayes Classifier: Training Dataset 

Class:	
C1:buys_computer	=	
‘yes’	
C2:buys_computer	=	
‘no’	
	
Data	to	be	classified:		
X	=	(age	<=30,		
Income	=	medium,	
Student	=	yes	
Credit_raGng	=	Fair)	

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Naïve Bayes Classifier: An Example 
n  P(Ci):				P(buys_computer	=	“yes”)		=	9/14	=	0.643	
																			P(buys_computer	=	“no”)	=	5/14=	0.357	
n  Compute	P(X|Ci)	for	each	class	

					P(age	=	“<=30”	|	buys_computer	=	“yes”)		=	2/9	=	0.222	
					P(age	=	“<=	30”	|	buys_computer	=	“no”)	=	3/5	=	0.6	
					P(income	=	“medium”	|	buys_computer	=	“yes”)	=	4/9	=	0.444	
					P(income	=	“medium”	|	buys_computer	=	“no”)	=	2/5	=	0.4	
					P(student	=	“yes”	|	buys_computer	=	“yes)	=	6/9	=	0.667	
					P(student	=	“yes”	|	buys_computer	=	“no”)	=	1/5	=	0.2	
					P(credit_raGng	=	“fair”	|	buys_computer	=	“yes”)	=	6/9	=	0.667	
					P(credit_raGng	=	“fair”	|	buys_computer	=	“no”)	=	2/5	=	0.4	

n  	X	=	(age	<=	30	,	income	=	medium,	student	=	yes,	credit_ra/ng	=	fair)	
	P(X|Ci)	:	P(X|buys_computer	=	“yes”)	=	0.222	x	0.444	x	0.667	x	0.667	=	0.044	
																P(X|buys_computer	=	“no”)	=	0.6	x	0.4	x	0.2	x	0.4	=	0.019	
P(X|Ci)*P(Ci)	:	P(X|buys_computer	=	“yes”)	*	P(buys_computer	=	“yes”)	=	0.028	

	 														P(X|buys_computer	=	“no”)	*	P(buys_computer	=	“no”)	=	0.007	
Therefore,		X	belongs	to	class	(“buys_computer	=	yes”) 	 		

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Avoiding the Zero-Probability 
Problem 

n  Naïve	Bayesian	predicGon	requires	each	condiGonal	prob.	be	
non-zero.		Otherwise,	the	predicted	prob.	will	be	zero	

		
n  Ex.	Suppose	a	dataset	with	1000	tuples,	income=low	(0),	

income=	medium	(990),	and	income	=	high	(10)	
n  Use	Laplacian	correc/on	(or	Laplacian	esGmator)	

n  Adding	1	to	each	case	
Prob(income	=	low)	=	1/1003	
Prob(income	=	medium)	=	991/1003	
Prob(income	=	high)	=	11/1003	

n  The	“corrected”	prob.	esGmates	are	close	to	their	
“uncorrected”	counterparts	

∏
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=
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Naïve Bayes Classifier: Comments 

n  Advantages		
n  Easy	to	implement		
n  Good	results	obtained	in	most	of	the	cases	

n  Disadvantages	
n  AssumpGon:	class	condiGonal	independence,	therefore	loss	of	
accuracy	

n  PracGcally,	dependencies	exist	among	variables		
n  E.g.,		hospitals:	paGents:	Profile:	age,	family	history,	etc.		

	Symptoms:	fever,	cough	etc.,	Disease:	lung	cancer,	
diabetes,	etc.		

n  Dependencies	among	these	cannot	be	modeled	by	Naïve	
Bayes	Classifier	

n  How	to	deal	with	these	dependencies?	Bayesian	Belief	Networks	
(Chapter	9)	
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Chapter 8. Classification: Basic 
Concepts 

n  ClassificaGon:	Basic	Concepts	

n  Decision	Tree	InducGon	

n  Bayes	ClassificaGon	Methods	

n  Rule-Based	ClassificaGon	

n  Model	EvaluaGon	and	SelecGon	

n  Techniques	to	Improve	ClassificaGon	Accuracy:	
Ensemble	Methods	

n  Summary	
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Using IF-THEN Rules for Classification 

n  Represent	the	knowledge	in	the	form	of	IF-THEN	rules	

R:		IF	age	=	youth	AND	student	=	yes		THEN	buys_computer	=	yes	
n  Rule	antecedent/precondiGon	vs.	rule	consequent	

n  Assessment	of	a	rule:	coverage	and	accuracy		
n  ncovers	=	#	of	tuples	covered	by	R	
n  ncorrect	=	#	of	tuples	correctly	classified	by	R	
coverage(R)	=	ncovers	/|D|			/*	D:	training	data	set	*/	
accuracy(R)	=	ncorrect	/	ncovers	

n  If	more	than	one	rule	are	triggered,	need	conflict	resolu/on	
n  Size	ordering:	assign	the	highest	priority	to	the	triggering	rules	that	has	

the	“toughest”	requirement	(i.e.,	with	the	most	a<ribute	tests)	
n  Class-based	ordering:	decreasing	order	of	prevalence	or	misclassifica4on	

cost	per	class	
n  Rule-based	ordering	(decision	list):	rules	are	organized	into	one	long	

priority	list,	according	to	some	measure	of	rule	quality	or	by	experts	
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age? 

student? credit rating? 

<=30 >40 

no yes yes 

yes 

31..40 

no 

fair excellent yes no 

n  Example:	Rule	extracGon	from	our	buys_computer	decision-tree	
IF	age	=	young	AND	student	=	no																	THEN	buys_computer	=	no	
IF	age	=	young	AND	student	=	yes																THEN	buys_computer	=	yes	
IF	age	=	mid-age	 	 	 					THEN	buys_computer	=	yes	
IF	age	=	old	AND	credit_ra4ng	=	excellent		THEN	buys_computer	=	no	
IF	age	=	old	AND	credit_ra4ng	=	fair												THEN	buys_computer	=	yes	

Rule Extraction from a Decision Tree 
n  Rules	are	easier	to	understand	than	large	

trees	
n  One	rule	is	created	for	each	path	from	the	

root	to	a	leaf	
n  Each	aXribute-value	pair	along	a	path	forms	a	

conjuncGon:	the	leaf	holds	the	class	
predicGon		

n  Rules	are	mutually	exclusive	and	exhausGve	
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Rule Induction: Sequential Covering 
Method  

n  SequenGal	covering	algorithm:	Extracts	rules	directly	from	training	
data	

n  Typical	sequenGal	covering	algorithms:	FOIL,	AQ,	CN2,	RIPPER	
n  Rules	are	learned	sequen4ally,	each	for	a	given	class	Ci	will	cover	

many	tuples	of	Ci	but	none	(or	few)	of	the	tuples	of	other	classes	
n  Steps:		

n  Rules	are	learned	one	at	a	Gme	
n  Each	Gme	a	rule	is	learned,	the	tuples	covered	by	the	rules	are	
removed	

n  Repeat	the	process	on	the	remaining	tuples	unGl	termina4on	
condi4on,	e.g.,	when	no	more	training	examples	or	when	the	
quality	of	a	rule	returned	is	below	a	user-specified	threshold	

n  Comp.	w.	decision-tree	inducGon:	learning	a	set	of	rules	
simultaneously	
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Sequential Covering Algorithm   

	

	while	(enough	target	tuples	led)	
	generate	a	rule	
	remove	posiGve	target	tuples	saGsfying	this	rule	

Examples covered 
by Rule 3 

Examples covered 
by Rule 2 Examples covered 

by Rule 1 

Positive 
example
s 
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Rule Generation 
n  To	generate	a	rule	

while(true)	
	find	the	best	predicate	p	
	if	foil-gain(p)	>	threshold	then	add	p	to	current	rule	
	else	break	

Positiv
e 
exampl
es 

Negativ
e 
exampl
es 

A3=1 A3=1&&A1=2 
A3=1&&A1=2 

&&A8=5 
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How to Learn-One-Rule? 
n  Start	with	the	most	general	rule	possible:	condiGon	=	empty	
n  Adding	new	a<ributes	by	adopGng	a	greedy	depth-first	strategy	

n  Picks	the	one	that	most	improves	the	rule	quality	
n  Rule-Quality	measures:	consider	both	coverage	and	accuracy	

n  Foil-gain	(in	FOIL	&	RIPPER):	assesses	info_gain	by	extending	
condiGon	

n  favors	rules	that	have	high	accuracy	and	cover	many	posiGve	tuples	

n  Rule	pruning	based	on	an	independent	set	of	test	tuples	
	
	

Pos/neg	are	#	of	posiGve/negaGve	tuples	covered	by	R.	
If	FOIL_Prune	is	higher	for	the	pruned	version	of	R,	prune	R	

)log
''

'(log'_ 22 negpos
pos

negpos
posposGainFOIL

+
−

+
×=

negpos
negposRPruneFOIL

+

−
=)(_
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Chapter 8. Classification: Basic 
Concepts 

n  ClassificaGon:	Basic	Concepts	

n  Decision	Tree	InducGon	

n  Bayes	ClassificaGon	Methods	

n  Rule-Based	ClassificaGon	

n  Model	EvaluaGon	and	SelecGon	

n  Techniques	to	Improve	ClassificaGon	Accuracy:	
Ensemble	Methods	

n  Summary	



Model Evaluation and Selection 

n  EvaluaGon	metrics:	How	can	we	measure	accuracy?		Other	
metrics	to	consider?	

n  Use	valida/on	test	set	of	class-labeled	tuples	instead	of	
training	set	when	assessing	accuracy	

n  Methods	for	esGmaGng	a	classifier’s	accuracy:		
n  Holdout	method,	random	subsampling	

n  Cross-validaGon	
n  Bootstrap	

n  Comparing	classifiers:	
n  Confidence	intervals	

n  Cost-benefit	analysis	and	ROC	Curves	
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Classifier Evaluation Metrics: Confusion 
Matrix 

Actual	class\Predicted	
class	

buy_computer	
=		yes	

buy_computer	
=	no	

Total	

buy_computer	=	yes	 6954	 46	 7000	
buy_computer	=	no	 412	 2588	 3000	

Total	 7366	 2634	 10000	

n  Given	m	classes,	an	entry,	CMi,j		in	a	confusion	matrix	indicates	
#	of	tuples	in	class	i		that	were	labeled	by	the	classifier	as	class	j	

n  May	have	extra	rows/columns	to	provide	totals	

Confusion	Matrix:	
Actual	class\Predicted	class	 C1	 ¬	C1	

C1	 True	Posi/ves	(TP)	 False	Nega/ves	(FN)	

¬	C1	 False	Posi/ves	(FP)	 True	Nega/ves	(TN)	

Example of Confusion Matrix: 

49	



Classifier Evaluation Metrics: 
Accuracy, Error Rate, Sensitivity and 

Specificity 

n  Classifier	Accuracy,	or	
recogniGon	rate:	percentage	of	
test	set	tuples	that	are	correctly	
classified	
Accuracy	=	(TP	+	TN)/All	

n  Error	rate:	1	–	accuracy,	or	
Error	rate	=	(FP	+	FN)/All	

n  Class	Imbalance	Problem:		
n  One	class	may	be	rare,	e.g.	
fraud,	or	HIV-posiGve	

n  Significant	majority	of	the	
nega4ve	class	and	minority	of	
the	posiGve	class	

n  Sensi/vity:	True	PosiGve	
recogniGon	rate	

n  Sensi/vity	=	TP/P	
n  Specificity:	True	NegaGve	
recogniGon	rate	

n  Specificity	=	TN/N	

A\P	 C	 ¬C	

C	 TP	 FN	 P	

¬C	 FP	 TN	 N	

P’	 N’	 All	
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Classifier Evaluation Metrics:  
Precision and Recall, and F-

measures 
n  Precision:	exactness	–	what	%	of	tuples	that	the	classifier	

labeled	as	posiGve	are	actually	posiGve	

n  Recall:	completeness	–	what	%	of	posiGve	tuples	did	the	
classifier	label	as	posiGve?	

n  Perfect	score	is	1.0	
n  Inverse	relaGonship	between	precision	&	recall	
n  F	measure	(F1	or	F-score):	harmonic	mean	of	precision	and	

recall,	
	
n  Fß:		weighted	measure	of	precision	and	recall	

n  assigns	ß	Gmes	as	much	weight	to	recall	as	to	precision	
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Classifier Evaluation Metrics: Example 

52	

n  Precision	=	90/230	=	39.13%													Recall	=	90/300	=	30.00%	

Actual	Class\Predicted	class	 cancer	=	yes	 cancer	=	no	 Total	 RecogniGon(%)	

cancer	=	yes	 90	 210	 300	 30.00	(sensi4vity	

cancer	=	no	 140	 9560	 9700	 98.56	(specificity)	

Total	 230	 9770	 10000	 96.40	(accuracy)	



Evaluating Classifier Accuracy: 
Holdout & Cross-Validation 

Methods 
n  Holdout	method	

n  Given	data	is	randomly	parGGoned	into	two	independent	sets	
n  Training	set	(e.g.,	2/3)	for	model	construcGon	
n  Test	set	(e.g.,	1/3)	for	accuracy	esGmaGon	

n  Random	sampling:	a	variaGon	of	holdout	
n  Repeat	holdout	k	Gmes,	accuracy	=	avg.	of	the	accuracies	
obtained	

n  Cross-valida/on	(k-fold,	where	k	=	10	is	most	popular)	
n  Randomly	parGGon	the	data	into	k	mutually	exclusive	subsets,	
each	approximately	equal	size	

n  At	i-th	iteraGon,	use	Di	as	test	set	and	others	as	training	set	
n  Leave-one-out:	k	folds	where	k	=	#	of	tuples,	for	small	sized	
data	

n  *Stra/fied	cross-valida/on*:	folds	are	straGfied	so	that	class	
dist.	in	each	fold	is	approx.	the	same	as	that	in	the	iniGal	data	
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Evaluating Classifier Accuracy: 
Bootstrap 

n  Bootstrap	
n  Works	well	with	small	data	sets	
n  Samples	the	given	training	tuples	uniformly	with	replacement	

n  i.e.,	each	Gme	a	tuple	is	selected,	it	is	equally	likely	to	be	selected	
again	and	re-added	to	the	training	set	

n  Several	bootstrap	methods,	and	a	common	one	is	.632	boostrap	
n  A	data	set	with	d	tuples	is	sampled	d	Gmes,	with	replacement,	resulGng	in	

a	training	set	of	d	samples.		The	data	tuples	that	did	not	make	it	into	the	
training	set	end	up	forming	the	test	set.		About	63.2%	of	the	original	data	
end	up	in	the	bootstrap,	and	the	remaining	36.8%	form	the	test	set	(since	
(1	–	1/d)d	≈	e-1	=	0.368)	

n  Repeat	the	sampling	procedure	k	Gmes,	overall	accuracy	of	the	model:	
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Estimating Confidence Intervals: 
Classifier Models M1 vs. M2 

n  Suppose	we	have	2	classifiers,	M1	and	M2,	which	one	is	beXer?	

n  Use	10-fold	cross-validaGon	to	obtain																					and	

n  These	mean	error	rates	are	just	es4mates	of	error	on	the	true	

populaGon	of	future	data	cases	

n  What	if	the	difference	between	the	2	error	rates	is	just	

aXributed	to	chance?	

n  Use	a	test	of	sta/s/cal	significance	

n  Obtain	confidence	limits	for	our	error	esGmates	
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Estimating Confidence Intervals: 
Null Hypothesis 

n  Perform	10-fold	cross-validaGon	

n  Assume	samples	follow	a	t	distribu/on	with	k–1	degrees	of	
freedom	(here,	k=10)	

n  Use	t-test	(or	Student’s	t-test)	

n  Null	Hypothesis:	M1	&	M2	are	the	same	

n  If	we	can	reject	null	hypothesis,	then		

n  we	conclude	that	the	difference	between	M1	&	M2	is	
sta/s/cally	significant	

n  Chose	model	with	lower	error	rate	
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Estimating Confidence Intervals: t-test 

n  If	only	1	test	set	available:	pairwise	comparison	
n  For	ith	round	of	10-fold	cross-validaGon,	the	same	cross	
parGGoning	is	used	to	obtain	err(M1)i	and	err(M2)i	

n  Average	over	10	rounds	to	get		

n  t-test	computes	t-sta/s/c	with	k-1	degrees	of	
freedom:	

n  If	two	test	sets	available:	use	non-paired	t-test	

where 

and 

whe
re 

where k1 & k2 are # of cross-validation samples used for M1 & M2, resp. 
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Estimating Confidence Intervals: 
Table for t-distribution 

n  Symmetric	
n  Significance	level,	

e.g.,	sig	=	0.05	or	
5%	means	M1	&	M2	
are	significantly	
different	for	95%	of	
populaGon	

n  Confidence	limit,	z	
=	sig/2	
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Estimating Confidence Intervals: 
Statistical Significance 

n  Are	M1	&	M2	significantly	different?	
n  Compute	t.	Select	significance	level	(e.g.	sig	=	5%)	
n  Consult	table	for	t-distribuGon:	Find	t	value	corresponding	
to	k-1	degrees	of	freedom	(here,	9)	

n  t-distribuGon	is	symmetric:	typically	upper	%	points	of	
distribuGon	shown	→	look	up	value	for	confidence	limit	
z=sig/2	(here,	0.025)	

n  If	t	>	z	or	t	<	-z,	then	t	value	lies	in	rejecGon	region:	
n  Reject	null	hypothesis	that	mean	error	rates	of	M1	&	M2	
are	same	

n  Conclude:	staGsGcally	significant	difference	between	M1	
&	M2		

n  Otherwise,	conclude	that	any	difference	is	chance	
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Model Selection: ROC Curves 

n  ROC	(Receiver	OperaGng	
CharacterisGcs)	curves:	for	visual	
comparison	of	classificaGon	models	

n  Originated	from	signal	detecGon	theory	
n  Shows	the	trade-off	between	the	true	

posiGve	rate	and	the	false	posiGve	rate	
n  The	area	under	the	ROC	curve	is	a	

measure	of	the	accuracy	of	the	model	
n  Rank	the	test	tuples	in	decreasing	

order:	the	one	that	is	most	likely	to	
belong	to	the	posiGve	class	appears	at	
the	top	of	the	list	

n  The	closer	to	the	diagonal	line	(i.e.,	the	
closer	the	area	is	to	0.5),	the	less	
accurate	is	the	model	

n  VerGcal	axis	
represents	the	true	
posiGve	rate	

n  Horizontal	axis	rep.	
the	false	posiGve	rate	

n  The	plot	also	shows	a	
diagonal	line	

n  A	model	with	perfect	
accuracy	will	have	an	
area	of	1.0	
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Issues Affecting Model Selection 

n  Accuracy	
n  classifier	accuracy:	predicGng	class	label	

n  Speed	
n  Gme	to	construct	the	model	(training	Gme)	

n  Gme	to	use	the	model	(classificaGon/predicGon	Gme)	
n  Robustness:	handling	noise	and	missing	values	
n  Scalability:	efficiency	in	disk-resident	databases		

n  Interpretability	
n  understanding	and	insight	provided	by	the	model	

n  Other	measures,	e.g.,	goodness	of	rules,	such	as	decision	tree	
size	or	compactness	of	classificaGon	rules	
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n  ClassificaGon:	Basic	Concepts	

n  Decision	Tree	InducGon	

n  Bayes	ClassificaGon	Methods	

n  Rule-Based	ClassificaGon	

n  Model	EvaluaGon	and	SelecGon	

n  Techniques	to	Improve	ClassificaGon	Accuracy:	
Ensemble	Methods	

n  Summary	



Ensemble Methods: Increasing the 
Accuracy 

n  Ensemble	methods	
n  Use	a	combinaGon	of	models	to	increase	accuracy	
n  Combine	a	series	of	k	learned	models,	M1,	M2,	…,	Mk,	with	
the	aim	of	creaGng	an	improved	model	M*	

n  Popular	ensemble	methods	
n  Bagging:	averaging	the	predicGon	over	a	collecGon	of	
classifiers	

n  BoosGng:	weighted	vote	with	a	collecGon	of	classifiers	
n  Ensemble:	combining	a	set	of	heterogeneous	classifiers	
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Bagging: Boostrap Aggregation 

n  Analogy:	Diagnosis	based	on	mulGple	doctors’	majority	vote	
n  Training	

n  Given	a	set	D	of	d	tuples,	at	each	iteraGon	i,	a	training	set	Di	of	d	tuples	is	
sampled	with	replacement	from	D	(i.e.,	bootstrap)	

n  A	classifier	model	Mi	is	learned	for	each	training	set	Di	
n  ClassificaGon:	classify	an	unknown	sample	X		

n  Each	classifier	Mi	returns	its	class	predicGon	
n  The	bagged	classifier	M*	counts	the	votes	and	assigns	the	class	with	the	

most	votes	to	X	
n  PredicGon:	can	be	applied	to	the	predicGon	of	conGnuous	values	by	taking	

the	average	value	of	each	predicGon	for	a	given	test	tuple	
n  Accuracy	

n  Oden	significantly	beXer	than	a	single	classifier	derived	from	D	
n  For	noise	data:	not	considerably	worse,	more	robust		
n  Proved	improved	accuracy	in	predicGon	
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Boosting 

n  Analogy:	Consult	several	doctors,	based	on	a	combinaGon	of	
weighted	diagnoses—weight	assigned	based	on	the	previous	
diagnosis	accuracy	

n  How	boosGng	works?	
n  Weights	are	assigned	to	each	training	tuple	
n  A	series	of	k	classifiers	is	iteraGvely	learned	
n  Ader	a	classifier	Mi	is	learned,	the	weights	are	updated	to	

allow	the	subsequent	classifier,	Mi+1,	to	pay	more	a9en/on	to	
the	training	tuples	that	were	misclassified	by	Mi	

n  The	final	M*	combines	the	votes	of	each	individual	classifier,	
where	the	weight	of	each	classifier's	vote	is	a	funcGon	of	its	
accuracy	

n  BoosGng	algorithm	can	be	extended	for	numeric	predicGon	
n  Comparing	with	bagging:	BoosGng	tends	to	have	greater	accuracy,	

but	it	also	risks	overfi^ng	the	model	to	misclassified	data	
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Adaboost (Freund and Schapire, 1997) 

n  Given	a	set	of	d	class-labeled	tuples,	(X1,	y1),	…,	(Xd,	yd)	
n  IniGally,	all	the	weights	of	tuples	are	set	the	same	(1/d)	
n  Generate	k	classifiers	in	k	rounds.		At	round	i,	

n  Tuples	from	D	are	sampled	(with	replacement)	to	form	a	training	set	
Di	of	the	same	size	

n  Each	tuple’s	chance	of	being	selected	is	based	on	its	weight	
n  A	classificaGon	model	Mi	is	derived	from	Di	

n  Its	error	rate	is	calculated	using	Di	as	a	test	set	
n  If	a	tuple	is	misclassified,	its	weight	is	increased,	o.w.	it	is	decreased	

n  Error	rate:	err(Xj)	is	the	misclassificaGon	error	of	tuple	Xj.	Classifier	Mi	
error	rate	is	the	sum	of	the	weights	of	the	misclassified	tuples:		

n  The	weight	of	classifier	Mi’s	vote	is	
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Random Forest (Breiman 2001)  
n  Random	Forest:		

n  Each	classifier	in	the	ensemble	is	a	decision	tree	classifier	and	is	
generated	using	a	random	selecGon	of	aXributes	at	each	node	to	
determine	the	split	

n  During	classificaGon,	each	tree	votes	and	the	most	popular	class	is	
returned	

n  Two	Methods	to	construct	Random	Forest:	
n  Forest-RI	(random	input	selec4on):		Randomly	select,	at	each	node,	F	

aXributes	as	candidates	for	the	split	at	the	node.	The	CART	methodology	
is	used	to	grow	the	trees	to	maximum	size	

n  Forest-RC	(random	linear	combina4ons):		Creates	new	aXributes	(or	
features)	that	are	a	linear	combinaGon	of	the	exisGng	aXributes	(reduces	
the	correlaGon	between	individual	classifiers)	

n  Comparable	in	accuracy	to	Adaboost,	but	more	robust	to	errors	and	outliers		
n  InsensiGve	to	the	number	of	aXributes	selected	for	consideraGon	at	each	

split,	and	faster	than	bagging	or	boosGng	
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Classification of Class-Imbalanced Data Sets 

n  Class-imbalance	problem:	Rare	posiGve	example	but	numerous	
negaGve	ones,	e.g.,	medical	diagnosis,	fraud,	oil-spill,	fault,	etc.		

n  TradiGonal	methods	assume	a	balanced	distribuGon	of	classes	
and	equal	error	costs:	not	suitable	for	class-imbalanced	data	

n  Typical	methods	for	imbalance	data	in	2-class	classificaGon:		
n  Oversampling:	re-sampling	of	data	from	posiGve	class	
n  Under-sampling:	randomly	eliminate		tuples	from	negaGve	
class	

n  Threshold-moving:	moves	the	decision	threshold,	t,	so	that	
the	rare	class	tuples	are	easier	to	classify,	and	hence,	less	
chance	of	costly	false	negaGve	errors	

n  Ensemble	techniques:	Ensemble	mulGple	classifiers	
introduced	above	

n  SGll	difficult	for	class	imbalance	problem	on	mulGclass	tasks	
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Chapter 8. Classification: Basic Concepts 

n  ClassificaGon:	Basic	Concepts	

n  Decision	Tree	InducGon	

n  Bayes	ClassificaGon	Methods	

n  Rule-Based	ClassificaGon	

n  Model	EvaluaGon	and	SelecGon	

n  Techniques	to	Improve	ClassificaGon	Accuracy:	
Ensemble	Methods	

n  Summary	



Summary (I) 

n  ClassificaGon	is	a	form	of	data	analysis	that	extracts	models	
describing	important	data	classes.		

n  EffecGve	and	scalable	methods	have	been	developed	for	decision	
tree	inducGon,	Naive	Bayesian	classificaGon,	rule-based	
classificaGon,	and	many	other	classificaGon	methods.	

n  EvaluaGon	metrics	include:	accuracy,	sensiGvity,	specificity,	
precision,	recall,	F	measure,	and	Fß	measure.	

n  StraGfied	k-fold	cross-validaGon	is	recommended	for	accuracy	
esGmaGon.		Bagging	and	boosGng	can	be	used	to	increase	overall	
accuracy	by	learning	and	combining	a	series	of	individual	models.	
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Summary (II) 

n  Significance	tests	and	ROC	curves	are	useful	for	model	selecGon.	

n  There	have	been	numerous	comparisons	of	the	different	
classificaGon	methods;	the	maXer	remains	a	research	topic	

n  No	single	method	has	been	found	to	be	superior	over	all	others	
for	all	data	sets	

n  Issues	such	as	accuracy,	training	Gme,	robustness,	scalability,	
and	interpretability	must	be	considered	and	can	involve	trade-

offs,	further	complicaGng	the	quest	for	an	overall	superior	
method	
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CS412 Midterm Exam Statistics 

n  Opinion	QuesGon	Answering:	
n  Like	the	style:	70.83%,	dislike:	29.16%	
n  Exam	is	hard:	55.75%,	easy:	0.6%,	just	right:	43.63%	
n  Time:	plenty:3.03%,	enough:	36.96%,	not:	60%	
n  Score	distribuGon:	#	of	students	(Total:	180)	
n  >=90:		24			
n  80-89:	54			
n  70-79:	46	

n  Final	grading	are	based	on	overall	score	accumulaGon	
and	relaGve	class	distribuGons	
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n  60-69:	37		
n  50-59:	15	
n  40-49:	2	

n  <40:	2	
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Issues: Evaluating Classification Methods 

n  Accuracy	
n  classifier	accuracy:	predicGng	class	label	
n  predictor	accuracy:	guessing	value	of	predicted	aXributes	

n  Speed	
n  Gme	to	construct	the	model	(training	Gme)	
n  Gme	to	use	the	model	(classificaGon/predicGon	Gme)	

n  Robustness:	handling	noise	and	missing	values	
n  Scalability:	efficiency	in	disk-resident	databases		
n  Interpretability	

n  understanding	and	insight	provided	by	the	model	
n  Other	measures,	e.g.,	goodness	of	rules,	such	as	decision	tree	

size	or	compactness	of	classificaGon	rules	
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Predictor Error Measures 

n  Measure	predictor	accuracy:	measure	how	far	off	the	predicted	value	is	from	
the	actual	known	value	

n  Loss	func/on:	measures	the	error	betw.	yi	and	the	predicted	value	yi’	

n  Absolute	error:	|	yi	–	yi’|		
n  Squared	error:		(yi	–	yi’)2		

n  Test	error	(generalizaGon	error):	the	average	loss	over	the	test	set	
n  Mean	absolute	error:																		Mean	squared	error:	

n  RelaGve	absolute	error:															RelaGve	squared	error:	

	
The	mean	squared-error	exaggerates	the	presence	of	outliers	
Popularly	use	(square)	root	mean-square	error,	similarly,	root	relaGve	

squared	error	
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Scalable Decision Tree Induction 
Methods 

n  SLIQ	(EDBT’96	—	Mehta	et	al.)	
n  Builds	an	index	for	each	aXribute	and	only	class	list	and	the	
current	aXribute	list	reside	in	memory	

n  SPRINT	(VLDB’96	—	J.	Shafer	et	al.)	
n  Constructs	an	aXribute	list	data	structure		

n  PUBLIC	(VLDB’98	—	Rastogi	&	Shim)	
n  Integrates	tree	spli^ng	and	tree	pruning:	stop	growing	the	
tree	earlier	

n  RainForest	(VLDB’98	—	Gehrke,	Ramakrishnan	&	GanG)	
n  Builds	an	AVC-list	(aXribute,	value,	class	label)	

n  BOAT	(PODS’99	—	Gehrke,	GanG,	Ramakrishnan	&	Loh)	
n  Uses	bootstrapping	to	create	several	small	samples	
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Data Cube-Based Decision-Tree 
Induction 

n  IntegraGon	of	generalizaGon	with	decision-tree	inducGon	
(Kamber	et	al.’97)	

n  ClassificaGon	at	primiGve	concept	levels	

n  E.g.,	precise	temperature,	humidity,	outlook,	etc.	

n  Low-level	concepts,	scaXered	classes,	bushy	classificaGon-
trees	

n  SemanGc	interpretaGon	problems	

n  Cube-based	mulG-level	classificaGon	

n  Relevance	analysis	at	mulG-levels	

n  InformaGon-gain	analysis	with	dimension	+	level	
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Veri Ön İşleme (Data Preprocessing) 

n  Data Preprocessing: Giriş 

n  Veri Kalitesi 

n  Veri Ön işlemedeki ana işlemler 

n  Veri Temizleme (Data Cleaning) 

n  Veri Uyumu (Data Integration) 

n  Veri Küçültme (Data Reduction) 

n  Veri Dönüştürme ve Verinin Ayrıklaştırılması (Data 

Transformation and Data Discretization) 



Data Warehouse: A Multi-Tiered Architecture 

Data 
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(Veri Ambarı) 

Extract 
Transform 
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Metadata 

Veri Kaynakları Front-End Tools 

Serve 

Data Marts 

Operational  
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Other 
sources 

Data Storage 

OLAP Server 
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Veri Kalitesi ( Data Quality) 

n  Çok boyutlu olarak veri kalitesi kriterleri : Neden Ön işlem yapılır? 

n  Kesinlik (Accuracy) doğru ve yanlış veriler 

n  Tamamlık (Completeness) : kaydedilmemiş veya ulaşılamayan 

veriler 

n  Tutarlılık (Consistency) verilerin bir kısmının güncel olmaması, 

sallantıda veriler (dangling) 

n  Güncellik (Timeliness) 

n  İnandırıcılık (Believability)  

n  Yorumlanabilirlik (Interpretability): Verinin ne kadar kolay 

anlaşılacağı 



85 

Veri Ön İşleme İşlemleri 

n  Veri Temizleme (Data cleaning) 

n  Eksik verilerin doldurulması, gürültülü verilerin düzeltilmesi, aykırı 
verilerin (outlier) temizlenmesi, uyuşmazlıkların (inconsistencies) 
çözümlenmesi 

n  Veri Entegrasyonu (Data integration) 

n  Farklı veri kaynaklarının, Veri Küplerinin veya Dosyaların entegre olması 

n  Verinin Küçültülmesi (Data reduction) 

n  Boyut Küçültme (Dimensionality reduction) 

n  Sayısal Küçültme (Numerosity reduction) 

n  Verinin Sıkıştırılması (Data compression) 

n  Verinin Dönüştürülmesi ve Ayrıklaştırılması (Data transformation 
and data discretization) 

n  Normalleştirme (Normalization ) 

n  Kavram Hiyerarşisi (Concept hierarchy generation) 
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Veri Ön İşleme (Data Preprocessing) 

n  Data Preprocessing: Giriş 

n  Veri Kalitesi 

n  Veri Ön işlemedeki ana işlemler 

n  Veri Temizleme (Data Cleaning) 

n  Veri Uyumu (Data Integration) 

n  Veri Küçültme (Data Reduction) 

n  Veri Dönüştürme ve Verinin Ayrıklaştırılması (Data 

Transformation and Data Discretization) 
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Veri Temizleme (Data Cleaning) 

n  Gerçek hayattaki veriler kirlidir: Çok sayıda makine, insan veya 
bilgisayar hataları, iletim bozulmaları yaşanabilir.  

n  Eksik Veri (incomplete) bazı özelliklerin eksik olması (missing 
data), sadece birleşik verinin (aggregate) bulunması 

n  örn., Meslek=“ ” (girilmemiş) 
n  Gülrültülü Veri (noisy): Gürültü, hata veya aykırı veriler bulunması 

n  örn., Maaş=“−10” (hata) 
n  Tutarsız Veri (inconsistent): farklı kaynaklardan farklı veriler 

gelmesi 
n  Yaş=“42”, Doğum Tarihi=“03/07/2010” 
n  Eski notlama “1, 2, 3”, yeni notlama “A, B, C” 
n  Tekrarlı kayıtlarda uyuşmazlık 

n  Kasıtlı Problemler (Intentional)  
n  Doğum tarihi bilinmeyen herkese 1 Ocak yazılması 
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Eksik Veriler  
(Incomplete (Missing) Data) 

n  Veriye her zaman erişilmesi mümkün değildir 
n  Örn., bazı kayıtların alın(a)mamış olması. Satış 

sırasında müşterilerin gelir düzeyinin yazılmamış 
olması. 

n  Eksik veriler genelde aşağıdaki durumlarda olur: 
n  Donanımsal bozukluklardan 

n  Uyuşmazlık yüzünden silinen veriler 
n  Anlaşılamayan verilerin girilmemiş olması 

n  Veri girişi sırasında veriye önem verilmemiş olması  
n  Verideki değişikliklerin kaydedilmemiş olması 

n  Eksik verilerin çözülmesi gerekir 
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Eksik veriler nasıl çözülür? 

n  İhmal etme: Eksik veriler işleme alınmaz, yokmuş gibi 
davranılır. Kullanılan VM yöntemine göre sonuca etkileri 
bilinmelidir. 

n  Eksik verilerin elle doldurulması: her zaman mümkün 
değildir ve bazan çok uzun ve maliyetli olabilir 

n  Otomatik olarak doldurulması 

n  Bütün eksik veriler için yeni bir sınıf oluşturulması 
(“bilinmiyor” gibi) 

n  Ortalamanın yazılması 

n  Sınıf bazında ortalamaların yazılması 

n  Bayesian formül ve karar ağacı uygulaması 
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Gürültülü Veri  
(Noisy Data) 

n  Gürültü (Noise): ölçümdeki rasgele oluşan değerler 
n  Yanlış özellik değerleri aşağıdaki durumlarda oluşabilir: 

n  Veri toplama araçlarındaki hatalar 
n  Veri giriş problemleri  
n  Veri iletim problemleri 
n  Teknoloji sınırları  
n  İsimlendirmedeki tutarsızlıklar 

n  Veri temizlemesini gerektiren diğer durumlar 
n  Tekrarlı kayıtlar 
n  Eksik veriler 
n  Tutarsız veriler 



91 

Gürültülü Veri Nasıl Çözülür? 

n  Paketleme (Binning) 
n  Veri sıralanır ve eşit frekanslarda paketlere bölünür.  
n  Eksik veriler farklı yöntemlerle doldurulur:  

n  Mean 
n  Median 
n  Boundary  

n  Regrezisyon (Regression) 
n  Regrezisyon fonksiyonlarına tabi tutularak eksik 

verilerin girilmesi 
n  Bölütleme (Kümeleme , Clustering) 

n  Aykırı verilerin bulunması ve temizlenmesi 
n  Bilgisayar ve insan bilgisinin ortaklaşa kullanılması 

n  detect suspicious values and check by human (e.g., 
deal with possible outliers) 
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Veri Temizleme Süreci 
n  Verideki farklılıkların yakalanması 

n  Üst verinin (metadata) kullanılması (örn., veri alanı (domain, 
range) , bağlılık (dependency), dağılım (distribution) 

n  Aşırı yüklü alanlar (Field Overloading) 
n  Veri üzerinde kural kontrolleri (unique, consecutive, null) 
n  Ticari yazılımların kullanılması 

n  Bilgi Ovalaması (Data scrubbing): Basit alan bilgileri kurallarla 
kontrol etmek (e.g., postal code, spell-check)  

n  Veri Denetimi (Data auditing): veriler üzerinden kural çıkarımı 
ve kurallara uymayanların bulunması (örn., correlation veya 
clustering ile aykırıların (outliers) bulunması) 

n  Veri Göçü ve Entegrasyonu (Data migration and integration) 
n  Data migration Araçları: Verinin dönüştürülmesine izin verir 
n  ETL (Extraction/Transformation/Loading) Araçları: Genelde grafik 

arayüzü ile dönüşümü yönetme imkanı verir 
n  İki farklı işin entegre yürütülmesi 

n  Iterative / interactive (Örn.., Potter’s Wheels) 



Aşırı Yüklü Alanlar 
(Overloaded Fields) 

n  Aşırı Yüklü Alanların Temizlenmesi 
n  Zincirleme (Chaining) 

n  Birleştirme (Coupling) 

n  Çok Amaçlılık (Multipurpose) 
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Örnekler 

94 

Vijayshankar Raman and Joseph M. Hellerstein , Potter’s Wheel: An Interactive Data Cleaning System  
  

berkeley 
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Chapter 3: Data Preprocessing 

n  Data Preprocessing: An Overview 

n  Data Quality 

n  Major Tasks in Data Preprocessing 

n  Data Cleaning 

n  Data Integration 

n  Data Reduction 

n  Data Transformation and Data Discretization 

n  Summary 
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Data Integration 

n  Data integration:  

n  Combines data from multiple sources into a coherent store 

n  Schema integration: e.g., A.cust-id ≡ B.cust-# 

n  Integrate metadata from different sources 

n  Entity identification problem:  

n  Identify real world entities from multiple data sources, e.g., Bill 
Clinton = William Clinton 

n  Detecting and resolving data value conflicts 

n  For the same real world entity, attribute values from different 
sources are different 

n  Possible reasons: different representations, different scales, e.g., 
metric vs. British units 
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Handling Redundancy in Data Integration 

n  Redundant data occur often when integration of multiple 
databases 

n  Object identification:  The same attribute or object 
may have different names in different databases 

n  Derivable data: One attribute may be a “derived” 
attribute in another table, e.g., annual revenue 

n  Redundant attributes may be able to be detected by 
correlation analysis and covariance analysis 

n  Careful integration of the data from multiple sources may 
help reduce/avoid redundancies and inconsistencies and 
improve mining speed and quality 
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Correlation Analysis (Nominal Data) 

n  Χ2 (chi-square) test 

n  The larger the Χ2 value, the more likely the variables are 
related 

n  The cells that contribute the most to the Χ2 value are 
those whose actual count is very different from the 
expected count 

n  Correlation does not imply causality 
n  # of hospitals and # of car-theft in a city are correlated 

n  Both are causally linked to the third variable: population 

∑
−

=
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Chi-Square Calculation: An Example 

n  Χ2 (chi-square) calculation (numbers in parenthesis are 
expected counts calculated based on the data distribution 
in the two categories) 

n  It shows that like_science_fiction and play_chess are 
correlated in the group 

93.507
840

)8401000(
360

)360200(
210

)21050(
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)90250( 2222
2 =

−
+

−
+

−
+

−
=χ

Play chess Not play chess Sum (row) 

Like science fiction 250(90) 200(360) 450 

Not like science fiction 50(210) 1000(840) 1050 

Sum(col.) 300 1200 1500 
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Correlation Analysis (Numeric Data) 

n  Correlation coefficient (also called Pearson’s product 
moment coefficient) 

where n is the number of tuples,       and      are the respective 
means of A and B, σA and σB are the respective standard deviation 
of A and B, and Σ(aibi) is the sum of the AB cross-product. 

n  If rA,B > 0, A and B are positively correlated (A’s values 
increase as B’s).  The higher, the stronger correlation. 

n  rA,B = 0: independent;  rAB < 0: negatively correlated 
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Visually Evaluating Correlation 

Scatter plots 
showing the 
similarity from 
–1 to 1. 
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Correlation (viewed as linear 
relationship) 

n  Correlation measures the linear relationship 
between objects 

n  To compute correlation, we standardize data 
objects, A and B, and then take their dot product 

)(/))((' AstdAmeanaa kk −=

)(/))((' BstdBmeanbb kk −=
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Covariance (Numeric Data) 

n  Covariance is similar to correlation 

where n is the number of tuples,      and      are the respective mean or 
expected values of A and B, σA and σB are the respective standard 
deviation of A and B. 

n  Positive covariance: If CovA,B > 0, then A and B both tend to be larger 
than their expected values. 

n  Negative covariance: If CovA,B < 0 then if A is larger than its expected 
value, B is likely to be smaller than its expected value. 

n  Independence: CovA,B = 0 but the converse is not true: 
n  Some pairs of random variables may have a covariance of 0 but are not 

independent. Only under some additional assumptions (e.g., the data follow 
multivariate normal distributions) does a covariance of 0 imply independence 

A B

Correlation coefficient: 



Co-Variance: An Example 

n  It can be simplified in computation as 

n  Suppose two stocks A and B have the following values in one week:  

(2, 5), (3, 8), (5, 10), (4, 11), (6, 14).  

n  Question:  If the stocks are affected by the same industry trends, will 

their prices rise or fall together? 

n  E(A) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4 

n  E(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6 

n  Cov(A,B) = (2×5+3×8+5×10+4×11+6×14)/5 − 4 × 9.6 = 4 

n  Thus, A and B rise together since Cov(A, B) > 0. 
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Chapter 3: Data Preprocessing 

n  Data Preprocessing: An Overview 

n  Data Quality 

n  Major Tasks in Data Preprocessing 

n  Data Cleaning 

n  Data Integration 

n  Data Reduction 

n  Data Transformation and Data Discretization 

n  Summary 
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Data Reduction Strategies 
n  Data reduction: Obtain a reduced representation of the data set that 

is much smaller in volume but yet produces the same (or almost the 
same) analytical results 

n  Why data reduction? — A database/data warehouse may store 
terabytes of data.  Complex data analysis may take a very long time to 
run on the complete data set. 

n  Data reduction strategies 
n  Dimensionality reduction, e.g., remove unimportant attributes 

n  Wavelet transforms 
n  Principal Components Analysis (PCA) 
n  Feature subset selection, feature creation 

n  Numerosity reduction (some simply call it: Data Reduction) 
n  Regression and Log-Linear Models 
n  Histograms, clustering, sampling 
n  Data cube aggregation 

n  Data compression 
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Data Reduction 1: Dimensionality 
Reduction 

n  Curse of dimensionality 
n  When dimensionality increases, data becomes increasingly sparse 
n  Density and distance between points, which is critical to clustering, outlier 

analysis, becomes less meaningful 

n  The possible combinations of subspaces will grow exponentially 
n  Dimensionality reduction 

n  Avoid the curse of dimensionality 
n  Help eliminate irrelevant features and reduce noise 

n  Reduce time and space required in data mining 
n  Allow easier visualization 

n  Dimensionality reduction techniques 
n  Wavelet transforms 
n  Principal Component Analysis 
n  Supervised and nonlinear techniques (e.g., feature selection) 



108 

Mapping Data to a New Space 

Two Sine Waves Two Sine Waves + Noise Frequency 

n  Fourier transform 
n  Wavelet transform  
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What Is Wavelet Transform? 

n  Decomposes a signal into 
different frequency subbands 

n  Applicable to n-
dimensional signals 

n  Data are transformed to 
preserve relative distance 
between objects at different 
levels of resolution 

n  Allow natural clusters to 
become more distinguishable 

n  Used for image compression 
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Wavelet Transformation  

n  Discrete wavelet transform (DWT) for linear signal 
processing, multi-resolution analysis 

n  Compressed approximation: store only a small fraction of 
the strongest of the wavelet coefficients 

n  Similar to discrete Fourier transform (DFT), but better 
lossy compression, localized in space 

n  Method: 
n  Length, L, must be an integer power of 2 (padding with 0’s, when 

necessary) 
n  Each transform has 2 functions: smoothing, difference 
n  Applies to pairs of data, resulting in two set of data of length L/2 

n  Applies two functions recursively, until reaches the desired length 

  
 

Haar2 Daubechie4 
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Wavelet Decomposition 

n  Wavelets: A math tool for space-efficient hierarchical 
decomposition of functions  

n  S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to S^ = 
[23/4, -11/4, 1/2, 0, 0, -1, -1, 0] 

n  Compression: many small detail coefficients can be 
replaced by 0’s, and only the significant coefficients are 
retained 
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Haar Wavelet Coefficients  
 Coefficient “Supports” 
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Why Wavelet Transform? 

n  Use hat-shape filters 
n  Emphasize region where points cluster 
n  Suppress weaker information in their boundaries   

n  Effective removal of outliers 
n  Insensitive to noise, insensitive to input order 

n  Multi-resolution 
n  Detect arbitrary shaped clusters at different scales 

n  Efficient 
n  Complexity O(N) 

n  Only applicable to low dimensional data 
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x2 

x1 

e 

Principal Component Analysis (PCA) 

n  Find a projection that captures the largest amount of variation in data 
n  The original data are projected onto a much smaller space, resulting 

in dimensionality reduction. We find the eigenvectors of the 
covariance matrix, and these eigenvectors define the new space 
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n  Given N data vectors from n-dimensions, find k ≤ n orthogonal vectors 
(principal components) that can be best used to represent data  

n  Normalize input data: Each attribute falls within the same range 

n  Compute k orthonormal (unit) vectors, i.e., principal components 

n  Each input data (vector) is a linear combination of the k principal 
component vectors 

n  The principal components are sorted in order of decreasing 
“significance” or strength 

n  Since the components are sorted, the size of the data can be 
reduced by eliminating the weak components, i.e., those with low 
variance (i.e., using the strongest principal components, it is 
possible to reconstruct a good approximation of the original data) 

n  Works for numeric data only 

Principal Component Analysis (Steps) 
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Attribute Subset Selection 

n  Another way to reduce dimensionality of data 
n  Redundant attributes  

n  Duplicate much or all of the information contained in 
one or more other attributes 

n  E.g., purchase price of a product and the amount of 
sales tax paid 

n  Irrelevant attributes 
n  Contain no information that is useful for the data 

mining task at hand 
n  E.g., students' ID is often irrelevant to the task of 

predicting students' GPA 
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Heuristic Search in Attribute Selection 

n  There are 2d possible attribute combinations of d  attributes 
n  Typical heuristic attribute selection methods: 

n  Best single attribute under the attribute independence 
assumption: choose by significance tests 

n  Best step-wise feature selection: 
n  The best single-attribute is picked first 
n  Then next best attribute condition to the first, ... 

n  Step-wise attribute elimination: 
n  Repeatedly eliminate the worst attribute 

n  Best combined attribute selection and elimination 
n  Optimal branch and bound: 

n  Use attribute elimination and backtracking 
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Attribute Creation (Feature Generation) 

n  Create new attributes (features) that can capture the 
important information in a data set more effectively than 
the original ones 

n  Three general methodologies 
n  Attribute extraction 

n   Domain-specific 
n  Mapping data to new space (see: data reduction) 

n  E.g., Fourier transformation, wavelet 
transformation, manifold approaches (not covered) 

n  Attribute construction  
n  Combining features (see: discriminative frequent 

patterns in Chapter 7) 
n  Data discretization 



119 

Data Reduction 2: Numerosity 
Reduction 

n  Reduce data volume by choosing alternative, smaller 
forms of data representation 

n  Parametric methods (e.g., regression) 
n  Assume the data fits some model, estimate model 

parameters, store only the parameters, and discard 
the data (except possible outliers) 

n  Ex.: Log-linear models—obtain value at a point in m-
D space as the product on appropriate marginal 
subspaces  

n  Non-parametric methods  
n  Do not assume models 
n  Major families: histograms, clustering, sampling, …  
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Parametric Data Reduction: 
Regression and Log-Linear Models 

n  Linear regression 
n  Data modeled to fit a straight line 
n  Often uses the least-square method to fit the line 

n  Multiple regression 
n  Allows a response variable Y to be modeled as a 

linear function of multidimensional feature vector 
n  Log-linear model 

n  Approximates discrete multidimensional probability 
distributions 
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Regression Analysis 

n  Regression analysis: A collective name for 
techniques for the modeling and analysis of 
numerical data consisting of values of a 
dependent variable (also called 
response variable or measurement) and 
of one or more independent variables (aka. 

explanatory variables or predictors) 

n  The parameters are estimated so as to give 
a "best fit" of the data 

n  Most commonly the best fit is evaluated by 
using the least squares method, but 
other criteria have also been used 

n  Used for prediction 
(including forecasting of 
time-series data), inference, 
hypothesis testing, and 
modeling of causal 
relationships 

y 

x 

y = x + 1 

X1 

Y1 

Y1’ 
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n  Linear regression: Y = w X + b 

n  Two regression coefficients, w and b, specify the line and are to be 
estimated by using the data at hand 

n  Using the least squares criterion to the known values of Y1, Y2, …, 
X1, X2, …. 

n  Multiple regression: Y = b0 + b1 X1 + b2 X2 

n  Many nonlinear functions can be transformed into the above 

n  Log-linear models: 

n  Approximate discrete multidimensional probability distributions 

n  Estimate the probability of each point (tuple) in a multi-dimensional 
space for a set of discretized attributes, based on a smaller subset 
of dimensional combinations 

n  Useful for dimensionality reduction and data smoothing 

Regress Analysis and Log-Linear 
Models 
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Histogram Analysis 

n  Divide data into buckets and 
store average (sum) for each 
bucket 

n  Partitioning rules: 

n  Equal-width: equal bucket 
range 

n  Equal-frequency (or equal-
depth) 
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Clustering 

n  Partition data set into clusters based on similarity, and 
store cluster representation (e.g., centroid and diameter) 
only 

n  Can be very effective if data is clustered but not if data 
is “smeared” 

n  Can have hierarchical clustering and be stored in multi-
dimensional index tree structures 

n  There are many choices of clustering definitions and 
clustering algorithms 

n  Cluster analysis will be studied in depth in Chapter 10 



125 

Sampling 

n  Sampling: obtaining a small sample s to represent the 
whole data set N 

n  Allow a mining algorithm to run in complexity that is 
potentially sub-linear to the size of the data 

n  Key principle: Choose a representative subset of the data 

n  Simple random sampling may have very poor 
performance in the presence of skew 

n  Develop adaptive sampling methods, e.g., stratified 
sampling:  

n  Note: Sampling may not reduce database I/Os (page at a 
time) 
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Types of Sampling 

n  Simple random sampling 
n  There is an equal probability of selecting any particular 

item 
n  Sampling without replacement 

n  Once an object is selected, it is removed from the 
population 

n  Sampling with replacement 
n  A selected object is not removed from the population 

n  Stratified sampling:  
n  Partition the data set, and draw samples from each 

partition (proportionally, i.e., approximately the same 
percentage of the data)  

n  Used in conjunction with skewed data 
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Sampling: With or without Replacement 

SRSWOR 

(simple random 

 sample without  

replacement) 

SRSWR 

Raw Data 
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Sampling: Cluster or Stratified 
Sampling 

Raw Data  Cluster/Stratified Sample 
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Data Cube Aggregation 

n  The lowest level of a data cube (base cuboid) 

n  The aggregated data for an individual entity of interest 

n  E.g., a customer in a phone calling data warehouse 

n  Multiple levels of aggregation in data cubes 

n  Further reduce the size of data to deal with 

n  Reference appropriate levels 

n  Use the smallest representation which is enough to 
solve the task 

n  Queries regarding aggregated information should be 
answered using data cube, when possible 



130 

Data Reduction 3: Data Compression 

n  String compression 
n  There are extensive theories and well-tuned algorithms 
n  Typically lossless, but only limited manipulation is 

possible without expansion 
n  Audio/video compression 

n  Typically lossy compression, with progressive refinement 
n  Sometimes small fragments of signal can be 

reconstructed without reconstructing the whole 
n  Time sequence is not audio 

n  Typically short and vary slowly with time 
n  Dimensionality and numerosity reduction may also be 

considered as forms of data compression 
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Data Compression 

Original Data Compressed  
Data 

lossless 

Original Data 
Approximated  
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Chapter 3: Data Preprocessing 

n  Data Preprocessing: An Overview 

n  Data Quality 

n  Major Tasks in Data Preprocessing 

n  Data Cleaning 

n  Data Integration 

n  Data Reduction 

n  Data Transformation and Data Discretization 

n  Summary 
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Data Transformation 
n  A function that maps the entire set of values of a given attribute to a 

new set of replacement values s.t. each old value can be identified 
with one of the new values 

n  Methods 

n  Smoothing: Remove noise from data 

n  Attribute/feature construction 

n  New attributes constructed from the given ones 

n  Aggregation: Summarization, data cube construction 

n  Normalization: Scaled to fall within a smaller, specified range 

n  min-max normalization 

n  z-score normalization 

n  normalization by decimal scaling 

n  Discretization: Concept hierarchy climbing 
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Normalization 
n  Min-max normalization: to [new_minA, new_maxA] 

n  Ex.  Let income range $12,000 to $98,000 normalized to [0.0, 
1.0].  Then $73,000 is mapped to   

n  Z-score normalization (µ: mean, σ: standard deviation): 

n  Ex. Let µ = 54,000, σ = 16,000.  Then 

n  Normalization by decimal scaling 
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Discretization  
n  Three types of attributes 

n  Nominal—values from an unordered set, e.g., color, profession 

n  Ordinal—values from an ordered set, e.g., military or academic 
rank  

n  Numeric—real numbers, e.g., integer or real numbers 

n  Discretization: Divide the range of a continuous attribute into intervals 

n  Interval labels can then be used to replace actual data values  

n  Reduce data size by discretization 

n  Supervised vs. unsupervised 

n  Split (top-down) vs. merge (bottom-up) 

n  Discretization can be performed recursively on an attribute 

n  Prepare for further analysis, e.g., classification 
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Data Discretization Methods 

n  Typical methods: All the methods can be applied recursively 

n  Binning  

n  Top-down split, unsupervised 

n  Histogram analysis 

n  Top-down split, unsupervised 

n  Clustering analysis (unsupervised, top-down split or 
bottom-up merge) 

n  Decision-tree analysis (supervised, top-down split) 

n  Correlation (e.g., χ2) analysis (unsupervised, bottom-up 
merge) 
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Simple Discretization: Binning 

n  Equal-width (distance) partitioning 

n  Divides the range into N intervals of equal size: uniform grid 

n  if A and B are the lowest and highest values of the attribute, the 

width of intervals will be: W = (B –A)/N. 

n  The most straightforward, but outliers may dominate presentation 

n  Skewed data is not handled well 

n  Equal-depth (frequency) partitioning 

n  Divides the range into N intervals, each containing approximately 

same number of samples 

n  Good data scaling 

n  Managing categorical attributes can be tricky 
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Binning Methods for Data Smoothing 

q  Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 
28, 29, 34 

*  Partition into equal-frequency (equi-depth) bins: 
      - Bin 1: 4, 8, 9, 15 
      - Bin 2: 21, 21, 24, 25 
      - Bin 3: 26, 28, 29, 34 
*  Smoothing by bin means: 
      - Bin 1: 9, 9, 9, 9 
      - Bin 2: 23, 23, 23, 23 
      - Bin 3: 29, 29, 29, 29 
*  Smoothing by bin boundaries: 
      - Bin 1: 4, 4, 4, 15 
      - Bin 2: 21, 21, 25, 25 
      - Bin 3: 26, 26, 26, 34 
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Discretization Without Using Class 
Labels 

(Binning vs. Clustering)  

Data Equal interval width (binning) 

Equal frequency (binning) K-means clustering leads to better results 
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Discretization by Classification & 
Correlation Analysis 

n  Classification (e.g., decision tree analysis) 

n  Supervised: Given class labels, e.g., cancerous vs. benign 

n  Using entropy to determine split point (discretization point) 

n  Top-down, recursive split 

n  Details to be covered in Chapter 7 

n  Correlation analysis (e.g., Chi-merge: χ2-based discretization) 

n  Supervised: use class information 

n  Bottom-up merge: find the best neighboring intervals (those 

having similar distributions of classes, i.e., low χ2 values) to merge 

n  Merge performed recursively, until a predefined stopping condition 
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Concept Hierarchy Generation 

n  Concept hierarchy organizes concepts (i.e., attribute values) 
hierarchically and is usually associated with each dimension in a data 
warehouse 

n  Concept hierarchies facilitate drilling and rolling in data warehouses to 
view data in multiple granularity 

n  Concept hierarchy formation: Recursively reduce the data by collecting 
and replacing low level concepts (such as numeric values for age) by 
higher level concepts (such as youth, adult, or senior) 

n  Concept hierarchies can be explicitly specified by domain experts and/
or data warehouse designers 

n  Concept hierarchy can be automatically formed for both numeric and 
nominal data.  For numeric data, use discretization methods shown. 
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Concept Hierarchy Generation  
for Nominal Data 

n  Specification of a partial/total ordering of attributes 
explicitly at the schema level by users or experts 

n  street < city < state < country 
n  Specification of a hierarchy for a set of values by explicit 

data grouping 
n  {Urbana, Champaign, Chicago} < Illinois 

n  Specification of only a partial set of attributes 
n  E.g., only street < city, not others 

n  Automatic generation of hierarchies (or attribute levels) by 
the analysis of the number of distinct values 

n  E.g., for a set of attributes: {street, city, state, country} 
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Automatic Concept Hierarchy Generation 

n  Some	hierarchies	can	be	automaGcally	generated	based	on	
the	analysis	of	the	number	of	disGnct	values	per	aXribute	in	
the	data	set		
n  The	aXribute	with	the	most	disGnct	values	is	placed	at	
the	lowest	level	of	the	hierarchy	

n  ExcepGons,	e.g.,	weekday,	month,	quarter,	year	

country 

province_or_ state 

city 

street 

15 distinct values 

365 distinct values 

3567 distinct values 

674,339 distinct values 
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Chapter 3: Data Preprocessing 

n  Data Preprocessing: An Overview 

n  Data Quality 

n  Major Tasks in Data Preprocessing 

n  Data Cleaning 

n  Data Integration 

n  Data Reduction 

n  Data Transformation and Data Discretization 

n  Summary 
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Summary 
n  Data quality: accuracy, completeness, consistency, timeliness, 

believability, interpretability 
n  Data cleaning: e.g. missing/noisy values, outliers 
n  Data integration from multiple sources:  

n  Entity identification problem 
n  Remove redundancies 
n  Detect inconsistencies 

n  Data reduction 
n  Dimensionality reduction 
n  Numerosity reduction 
n  Data compression 

n  Data transformation and data discretization 
n  Normalization 
n  Concept hierarchy generation 
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