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Supervised vs. Unsupervised Learning
(Gozetimli ve Gozetimsiz Ogrenme)

m Supervised learning (classification)

= Supervision: The training data (observations,
measurements, etc.) are accompanied by labels indicating

the class of the observations
= New data is classified based on the training set
s Unsupervised learning (clustering)
= The class labels of training data is unknown

= Given a set of measurements, observations, etc. with the
aim of establishing the existence of classes or clusters in
the data



Prediction Problems: Classification vs.
Numeric Prediction

m Classification
= predicts categorical class labels (discrete or nominal)

= classifies data (constructs a model) based on the training
set and the values (class labels) in a classifying attribute
and uses it in classifying new data

m Numeric Prediction

= models continuous-valued functions, i.e., predicts unknown
or missing values

m Typical applications
= Credit/loan approval:
s Medical diagnosis: if a tumor is cancerous or benign
= Fraud detection: if a transaction is fraudulent
s Web page categorization: which category it is



Classification—A Two-Step
Process

s  Model construction: describing a set of predetermined classes

= Each tuple/sample is assumed to belong to a predefined class, as
determined by the class label attribute

= The set of tuples used for model construction is training set

= The model is represented as classification rules, decision trees, or
mathematical formulae

s  Model usage: for classifying future or unknown objects

= Estimate accuracy of the model

= The known label of test sample is compared with the classified
result from the model

= Accuracy rate is the percentage of test set samples that are
correctly classified by the model

= Test set is independent of training set (otherwise overfitting)
= If the accuracy is acceptable, use the model to classify new data
= Note: If the test set is used to select models, it is called validation (test) set
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Decision Tree Induction: An Example

income |student|credit rating| buys computer

Q Training data set: Buys_computer

Q The data set follows an example of
Quinlan’ s ID3 (Playing Tennis)

Q Resulting tree:

credit rating?
/N

no yes excellent fair

V4 /
no - no
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Algorithm for Decision Tree Induction

= Basic algorithm (a greedy algorithm)
= Tree is constructed in a top-down recursive divide-and-
conquer manner
= At start, all the training examples are at the root
= Attributes are categorical (if continuous-valued, they are
discretized in advance)
= Examples are partitioned recursively based on selected
attributes
= Test attributes are selected on the basis of a heuristic or
statistical measure (e.g., information gain)
= Conditions for stopping partitioning
= All samples for a given node belong to the same class
= There are no remaining attributes for further partitioning —
majority voting is employed for classifying the leaf
= There are no samples left
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Brief Review of Entropy

m Entropy (Information Theory)
= A measure of uncertainty associated with a random

variable
= Calculation: For a discrete random variable Y taking

m distinct values {y4, ..., Ym },
« H(Y) = — X2, pilog(p;) , where p; = P(Y = y;)

= Interpretation:
= Higher entropy => higher uncertainty

H(X)

= Lower entropy => lower uncertainty

s Conditional Entropy
= HY|X) = 2x p(x)H(Y|X = x)
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Attribute Selection Measure:
Information Gain (ID3/C4.5)

Select the attribute with the highest information gain

Let p; be the probability that an arbitrary tuple in D belongs to
class C, estimated by |C; ,|/|D|

Expected information (entropy) needed to classify a tuple in D:

[nfO(D) T _E Pi 10g2 (pi)

1=l
Information needed (after using A to split D into v partitions) to

classify D:
Info (D) = E

Information gained by branching on attrlbute A

Gain(A) = Info(D)- Info (D)

|D| x[nfo(Dj)
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Attribute Selection: Information Gain

B Class P: buys_computer = ‘:‘yes: Info, (D) = 11(2,3) +i](490)
B Class N: buys_computer = “no 14 14
Info(D) = 19,5) = = log, (=) ~ = log, () =0.940 A % 1(3.2) = 0.694

age p N; I p', N; ‘“ ”
g i | 1(pi, i) 11(2,3)vneans age <=30" has 5 out of

14 samples, with 2 yes’ es and 3

no’ s. Hence

Gain(age) = Info(D) - Info . (D) = 0.246

age

income [student| credit ratin buys computer

Similarly,

Gain(income) = 0.029
Gain(student) = 0.151
Gain(credit rating) = 0.048



Computing Information-Gain for
Continuous-Valued Attributes

= Let attribute A be a continuous-valued attribute
s Must determine the best split point for A
= Sort the value A in increasing order

= Typically, the midpoint between each pair of adjacent values
is considered as a possible split point

= (a;+a,,;)/2 is the midpoint between the values of a, and a,,,

= The point with the minimum expected information
requirement for A is selected as the split-point for A

= Split:

= D1 is the set of tuples in D satisfying A < split-point, and D2 is
the set of tuples in D satisfying A > split-point

15



Gain Ratio for Attribute Selection
(C4.5)

16

Information gain measure is biased towards attributes with a
large number of values

C4.5 (a successor of ID3) uses gain ratio to overcome the
problem (normalization to information gain)

| D, D.
Splitinfo ,(D) = —E' ! |><10g2(| / |)
=l

| D | D|
= GainRatio(A) = Gain(A)/Splitinfo(A)

5 Splitinfo;,,..m.(D) = - X log2( - ) L % log2( s ) o X log2(14—4) == 1.557

14 14) 14 14/ 14

= gain_ratio(income) = 0.029/1.557 = 0.019

The attribute with the maximum gain ratio is selected as the
splitting attribute



Gini Index (CART, IBM IntelligentMiner)
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If a data set D contains examples from n classes, gini index,
gini(D) is defined as o no 5
gini(D)=1- 'Y P
j=1
where p; is the relative frequency of class jin D

If a data set D is split on A into two subsets D, and D,, the gini
index gini(D) is defined as
i D) D,|

gini (D)=""gini(p)+" = gini(p,)
A D] D]

Agini(A) = gini(D) - gini (D)

The attribute provides the smallest gini, (D) (or the largest
reduction in impurity) is chosen to split the node (need to
enumerate all the possible splitting points for each attribute)

Reduction in Impurity:



Computation of Gini Index

18

Ex. D has 9 tuples in buys _computer = “Zyes" and 5 in “no”
gini(D) =1- % -(154) = 0.459

Suppose the attribute income partitions D into 10 in D,: {low,

10

medium}and 4in D,  gini,,,, oo meam (D) = ( 1—4)Gim’(D1)+( %)Gim’(Dz)

5 QUROIEICOR0)

= Gini;

income ¢ {high} (D).

Ginigoy highy 1S 0-458; Giniy o yivm nighy 1S 0-450. Thus, split on the
{low,medium} (and {high}) since it has the lowest Gini index
All attributes are assumed continuous-valued

May need other tools, e.g., clustering, to get the possible split
values

Can be modified for categorical attributes



Comparing Attribute Selection Measures

s The three measures, in general, return good results but
= Information gain:
= biased towards multivalued attributes
= Gain ratio:

= tends to prefer unbalanced splits in which one partition is
much smaller than the others

= Gini index:
= biased to multivalued attributes
= has difficulty when # of classes is large

= tends to favor tests that result in equal-sized partitions
and purity in both partitions

19



Other Attribute Selection Measures

CHAID: a popular decision tree algorithm, measure based on y? test for

independence
C-SEP: performs better than info. gain and gini index in certain cases

G-statistic: has a close approximation to x? distribution

MDL (Minimal Description Length) principle (i.e., the simplest solution is

preferred):

= The best tree as the one that requires the fewest # of bits to both (1)

encode the tree, and (2) encode the exceptions to the tree
Multivariate splits (partition based on multiple variable combinations)
= CART: finds multivariate splits based on a linear comb. of attrs.
Which attribute selection measure is the best?

= Most give good results, none is significantly superior than others

20



Overfitting and Tree Pruning

s Overfitting: An induced tree may overfit the training data

= Too many branches, some may reflect anomalies due to
noise or outliers

= Poor accuracy for unseen samples
= Two approaches to avoid overfitting

= Prepruning: Halt tree construction early-do not split a node
if this would result in the goodness measure falling below a

threshold
= Difficult to choose an appropriate threshold

= Postpruning: Remove branches from a “fully grown” tree—
get a sequence of progressively pruned trees

= Use a set of data different from the training data to
decide which is the “best pruned tree”

21



Enhancements to Basic Decision Tree
Induction

= Allow for continuous-valued attributes

= Dynamically define new discrete-valued attributes that
partition the continuous attribute value into a discrete set of
intervals

= Handle missing attribute values
= Assign the most common value of the attribute
= Assign probability to each of the possible values
= Attribute construction

= Create new attributes based on existing ones that are
sparsely represented

= This reduces fragmentation, repetition, and replication

22



Classification in Large Databases

Classification—a classical problem extensively studied by
statisticians and machine learning researchers

Scalability: Classifying data sets with millions of examples and
hundreds of attributes with reasonable speed

Why is decision tree induction popular?

= relatively faster learning speed (than other classification
methods)

= convertible to simple and easy to understand classification
rules

= can use SQL queries for accessing databases

= comparable classification accuracy with other methods
RainForest (VLDB’ 98 — Gehrke, Ramakrishnan & Ganti)

= Builds an AVC-list (attribute, value, class label)

23



Scalapliity Framework Tor
RainForest

Separates the scalability aspects from the criteria that
determine the quality of the tree

Builds an AVC-list: AVC (Attribute, Value, Class label)
AVC-set (of an attribute X)

= Projection of training dataset onto the attribute X and
class label where counts of individual class label are
aggregated

AVC-group (of anode n)

= Set of AVC-sets of all predictor attributes at the node n

24



Rainforest: Training Set and Its AVC
Sets

Training Examples

e | income [studentfredit rating com

AVC-set on Age AVC-set on income

Age Buy_Computer income Buy_Computer
yes no
yes no
<=30 2 3 high 2 2
31..40 4 0 medium 4 2
AVC-set on
AVC-set on Student : :
credit_rating
student Buy_Computer Buy_Computer
Credit
yes no rating yes no
yes 6 1 fair 6 2
no 3 4 excellent 3 3

25




BOAT (Bootstrapped Optimistic
Algorithm for Tree Construction)

Use a statistical technique called bootstrapping to create
several smaller samples (subsets), each fits in memory

Each subset is used to create a tree, resulting in several

trees

These trees are examined and used to construct a new
tree T’

= Itturns out that T’ is very close to the tree that would
be generated using the whole data set together

Adv: requires only two scans of DB, an incremental alg.

26



Presentation of Classification Results
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Interactive Visual Mining by
Perceptlon Based Classification (PBC)
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Bayesian Classification: Why?

A statistical classifier: performs probabilistic prediction, i.e.,
predicts class membership probabilities

Foundation: Based on Bayes Theorem.

Performance: A simple Bayesian classifier, naive Bayesian

classifier, has comparable performance with decision tree and
selected neural network classifiers

Incremental: Each training example can incrementally increase/
decrease the probability that a hypothesis is correct — prior
knowledge can be combined with observed data

Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision
making against which other methods can be measured

31



Bayes Theorem: Basics

M
= Total probability Theorem: P(B)=.21P(B|Ai)P(AZ-)
l=

= Bayes Theorem: P(H|X)=P(XI|D7})(§(H)=P(X|H)><P(H)/P(X)

= Let X be a data sample (“evidence”): class label is unknown

= Let H be a hypothesis that X belongs to class C

= Classification is to determine P(H|X), (i.e., posteriori probability): the
probability that the hypothesis holds given the observed data sample X

= P(H) (prior probability): the initial probability
= E.g., X will buy computer, regardless of age, income, ...
= P(X): probability that sample data is observed

= P(X|H) (likelihood): the probability of observing the sample X, given that
the hypothesis holds

= E.g., Given that X will buy computer, the prob. that X is 31..40,
medium income

32



Prediction Based on Bayes’ Theorem

Given training data X, posteriori probability of a hypothesis H,
P(H|X), follows the Bayes’ theorem

P(X|H)P(H)

P(H |X)= 25 500

— P(X|H)x P(H)/ P(X)

Informally, this can be viewed as
posteriori = likelihood x prior/evidence

Predicts X belongs to C. iff the probability P(C.| X) is the highest
among all the P(C,|X) for all the k classes

Practical difficulty: It requires initial knowledge of many
probabilities, involving significant computational cost

33



Classification Is to Derive the Maximum
Posteriori

34

Let D be a training set of tuples and their associated class
labels, and each tuple is represented by an n-D attribute vector

X =(Xy, Xy, vy X))
Suppose there are mclasses C,, C,, ..., C_..
Classification is to derive the maximum posteriori, i.e., the
maximal P(C,|X)
This can be derived from Bayes’ theorem
P(C.1X)= P(X| Ci)P(Ci)
l P(X)

Since P(X) is constant for all classes, only
P(Ci|X)=P(X|Cl')P(Ci)

needs to be maximized



Naive Bayes Classifier

35

A simplified assumption: attributes are conditionally
independent (i.e., no dependence relation between attributes):

P(X|Cz)— H P(X |C1) P(X |C1)XP(X2|C1)X XP(X |C1)
This greatly reduces thg €bomputation cost: Only counts the"

class distribution

If A, is categorical, P(x,|C) is the # of tuples in C, having value x,
for A, divided by |C; ;| (# of tuples of C; in D)

If A, is continous-valued, P(x, |C.) is usually computed based on
Gaussian distribution with a mean p and standard deviation o

and P(x,|C) is RS
(x, u,0) = e 20
s N

P(X|Cy) = g(x,, 4c,0¢)




Naive Bayes Classifier: Training Dataset

Class:
Cl:buys_computer =
‘ves’
C2:buys_computer =

1 ’

no

Data to be classified:
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)

Income studentredit ratindg com|

36



Naive Bayes Classifier: An Example

age | income studentredit_rating com

<=30 high no |fair no

<=30 high no |excellent no

T o5 31040 higz_ no :a!r yes

= P(C): P(buys_computer="yes ) =9/14 =0.643 =40 Tiow [ yos Jier —[ves
>40 low yes |[excellent no

P(buys_computer = “no”) = 5/14= 0.357 31..90 flow | ves Jexcotient |ves

<=30 low yes [fair yes

= Compute P(X|C) for each class e T s st e
p =“<=30" | b = “ves”) =2/9=0.222 |stdolnish [ ves lisr |ves

(age - <_ | uys—compUter - yeS ) - / - ‘ >4-0“ mgdium ):10 excellent );10

P(age = “<=30" | buys_computer = “no”)=3/5=0.6

P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444

P(income = “medium” | buys_computer = “no”) =2/5=0.4

P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667

P(student = “yes” | buys_computer = “no”)=1/5=0.2

P(credit_rating = “fair” | buys_computer = “yes”’) =6/9 =0.667

P(credit_rating = “fair” | buys_computer = “no”)=2/5=0.4
= X=(age<=30, income = medium, student = yes, credit_rating = fair)
P(X]C,) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”)=0.6 x0.4x 0.2 x 0.4 =0.019
P(X]C,)*P(C)) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore, X belongs to class (“buys_computer = yes”) 37



AvVOIdINng the Zero-rronanility
Problem

38

Naive Bayesian prediction requires each conditional prob. be
non-zero. Otherwise, the predicted prob. will be zero

P(XICp = [1PGek|CD
k=1

Ex. Suppose a dataset with 1000 tuples, income=Ilow (0),
income= medium (990), and income = high (10)
Use Laplacian correction (or Laplacian estimator)
= Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) =991/1003

Prob(income = high) = 11/1003

= The “corrected” prob. estimates are close to their
“uncorrected” counterparts



Naive Bayes Classifier: Comments

s Advantages

= Easy to implement

= Good results obtained in most of the cases
s Disadvantages

= Assumption: class conditional independence, therefore loss of
accuracy

= Practically, dependencies exist among variables
= E.g., hospitals: patients: Profile: age, family history, etc.

Symptoms: fever, cough etc., Disease: lung cancer,
diabetes, etc.

= Dependencies among these cannot be modeled by Naive
Bayes Classifier

= How to deal with these dependencies? Bayesian Belief Networks
(Chapter 9)
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Using IF-THEN Rules for Classification

m  Represent the knowledge in the form of IF-THEN rules

R: IF age = youth AND student = yes THEN buys_computer = yes
= Rule antecedent/precondition vs. rule consequent

m  Assessment of a rule: coverage and accuracy
= N = # of tuples covered by R

covers

= N = # of tuples correctly classified by R

correct
coverage(R) =n_.,../|D| /* D:training data set */

accuracy(R) = n ot/ N

covers

= |f more than one rule are triggered, need conflict resolution

= Size ordering: assign the highest priority to the triggering rules that has
the “toughest” requirement (i.e., with the most attribute tests)

= Class-based ordering: decreasing order of prevalence or misclassification
cost per class

= Rule-based ordering (decision list): rules are organized into one long
priority list, according to some measure of rule quality or by experts

41



Rule Extraction from a Decision Tree

Rules are easier to understand than large

trees age?
. /4' [
One rule is created for each path from the a0 31"|40 \>40
root to a leaf / | —
student? e credit rating?
Each attribute-value pair along a path formsa \ 7 N
2 X n excellent fair
conjunction: the leaf holds the class - = : .
prediction no yes " =

Rules are mutually exclusive and exhaustive

Example: Rule extraction from our buys computer decision-tree

IF age = young AND student = no THEN buys computer = no
IF age = young AND student = yes THEN buys _computer = yes
IF age = mid-age THEN buys _computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys computer = yes
42



Kule Inaucuon: dequenual vovering
Method

Sequential covering algorithm: Extracts rules directly from training
data

Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

Rules are learned sequentially, each for a given class C, will cover
many tuples of C. but none (or few) of the tuples of other classes
Steps:

= Rules are learned one at a time

= Each time arule is learned, the tuples covered by the rules are
removed

= Repeat the process on the remaining tuples until termination
condition, e.g., when no more training examples or when the
quality of a rule returned is below a user-specified threshold

Comp. w. decision-tree induction: learning a set of rules

simultaneously
43



Sequential Covering Algorithm

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule

amples covered

Examples coveredoy Rule 2
by Rule 1

44



Rule Generation

= To generate arule
while(true)
find the best predicate p
if foil-gain(p) > threshold then add p to current rule
else break

Positiv Negativ

45



How to Learn-One-Rule?

46

Start with the most general rule possible: condition = empty

Adding new attributes by adopting a greedy depth-first strategy
= Picks the one that most improves the rule quality

Rule-Quality measures: consider both coverage and accuracy

= Foil-gain (in FOIL & RIPPER): assesses info_gain by extending

condition '
FOIL _Gain = pos'x(log, i —log, e
pos'+neg’ pos + neg

)
= favors rules that have high accuracy and cover many positive tuples

Rule pruning based on an independent set of test tuples

FOIL Prune(R)=22>~""€
pos + neg

Pos/neg are # of positive/negative tuples covered by R.
If FOIL_Prune is higher for the pruned version of R, prune R
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Model Evaluation and Selection

Evaluation metrics: How can we measure accuracy? Other
metrics to consider?

Use validation test set of class-labeled tuples instead of
training set when assessing accuracy

Methods for estimating a classifier’ s accuracy:
= Holdout method, random subsampling
= Cross-validation
= Bootstrap
Comparing classifiers:
= Confidence intervals

= Cost-benefit analysis and ROC Curves

48



Classifier Evaluation Metrics: Confusion

Matrix
Confusion Matrix:
Actual class\Predicted class C, - C;
C, True Positives (TP) False Negatives (FN)
-C; False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

Actual class\Predicted | buy_computer | buy_computer | Total
class = yes =no
buy computer = yes 6954 46 7000
buy computer = no 412 2588 3000
Total 7366 2634 10000

= Given m classes, an entry, CM;; in a confusion matrix indicates
# of tuples in class i that were labeled by the classifier as class j

= May have extra rows/columns to provide totals



Accuracy, Error Rate, Sensitivity and
Specificity

A\P | C

-C

C |TP

FN

P

~C | FP

TN

N

P!

N!

All

= Classifier Accuracy, or

recognition rate: percentage of
test set tuples that are correctly =

classified

Accuracy = (TP + TN)/AlI
s Errorrate: 1 —accuracy, or =
Error rate = (FP + FN)/AII

m Class Imbalance Problem:

One class may be rare, e.g.
fraud, or HIV-positive

Significant majority of the
negative class and minority of
the positive class

Sensitivity: True Positive
recognition rate

= Sensitivity = TP/P

Specificity: True Negative
recognition rate

= Specificity = TN/N

50



Precision and Recall, and F-
measures

Precision: exactness — what % of tuples that the classifier
labeled as positive are actually positive TP

precision = TP+ FP
Recall: completeness — what % of positive tuples did the

classifier label as positive? v ! & o
Perfect score is 1.0 . TP+ FN

Inverse relationship between precision & recall

F measure (F, or F-score): harmonic mean of precision and
recall, 2 X precision X recall

F =
precision + recall
Fg: weighted measure of precision and recall

= assigns [ times as much weight to recall as to precision

(1 + %) x precision x recall
3?2 x precision + recall

Fp

51



Classifier Evaluation Metrics: Example

Actual Class\Predicted class cancer =yes | cancer=no | Total Recognition(%)
cancer = yes 90 210 300 30.00 (sensitivity
cancer = no 140 9560 9700 | 98.56 (specificity)

Total 230 9770 10000 | 96.40 (accuracy)

= Precision =90/230 =39.13%

Recall =90/300 = 30.00%

52



Holdout & Cross-Validation
Methods

= Holdout method

Given data is randomly partitioned into two independent sets
= Training set (e.g., 2/3) for model construction
= Test set (e.g., 1/3) for accuracy estimation

Random sampling: a variation of holdout

= Repeat holdout k times, accuracy = avg. of the accuracies
obtained

= Cross-validation (k-fold, where k = 10 is most popular)

Randomly partition the data into k mutually exclusive subsets,
each approximately equal size

At i-th iteration, use D, as test set and others as training set

Leave-one-out: k folds where k = # of tuples, for small sized
data

*Stratified cross-validation*: folds are stratified so that class
dist. in each fold is approx. the same as that in the initial data

53



Evailuatng ulassirtier Accuracy:
Bootstrap

= Bootstrap
= Works well with small data sets
= Samples the given training tuples uniformly with replacement

= i.e., each time a tuple is selected, it is equally likely to be selected
again and re-added to the training set

m  Several bootstrap methods, and a common one is .632 boostrap

= A data set with d tuples is sampled d times, with replacement, resulting in
a training set of d samples. The data tuples that did not make it into the
training set end up forming the test set. About 63.2% of the original data
end up in the bootstrap, and the remaining 36.8% form the test set (since
(1-1/d)¥=el=0.368)

= Repeat the sampling procedure k times, overall accuracy of the model:
Acce(M) = N Z((,).().BQ X Acc(M;)test set + 0.368 x Acc(M;)train_set)
1=1
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Estimating Confidence Intervals:
Classifier Models M, vs. M,

Suppose we have 2 classifiers, M, and M,, which one is better?
Use 10-fold cross-validation to obtain é’?‘?(ﬂ/fl) and e (Ms)

These mean error rates are just estimates of error on the true

population of future data cases

What if the difference between the 2 error rates is just

attributed to chance?
= Use a test of statistical significance

s Obtain confidence limits for our error estimates

55



Estimating Confidence Intervals:
Null Hypothesis

Perform 10-fold cross-validation

Assume samples follow a t distribution with k—1 degrees of
freedom (here, k=10)

Use t-test (or Student’ s t-test)
Null Hypothesis: M, & M, are the same
If we can reject null hypothesis, then

= we conclude that the difference between M; & M, is

statistically significant

s Chose model with lower error rate
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Estimating Confidence Intervals: t-test

= If only 1 test set available: pairwise comparison
= For it round of 10-fold cross-validation, the same cross
partitioning is used to obtain err(M,). and err(M,).
= Average over 10 rounds to get g77(M;) and err(Ms)
= t-test computes t-statistic with k-1 degrees of
freedom: L err(M,) — err(M>)
) Vovar(My — M) /k

1 2
var(My — M) = p Z {E”rr'(ﬂfl)i —err(Ma); — (err(My) — W(‘lfg))}

=1
= If two test sets available: use non-paired t-test

var(M;) var(Ms)
5 ;
k1 ko

re o
where k; & k, are # of cross-validation samples used for M,
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Estimating Confidence Intervals:

Table for t distribution

= Symmetric

= Significance level,
e.g., sig =0.05 or
5% means M; & M,
are significantly
different for 95% of
population

s Confidence limit,
= sig/2

TABLE B: +-DISTRIBUTION CRITICAL VALUES

Tail probability p
‘af | 25 20 15 10 05 025 02 .01 00S  .0025 .001 0005
1] 1000 1376 1963 3.078 6314 1271 1589 31.82 63.66 1273 3183 6366
2] 816 1061 1386 1.886 2920 4303 43849 65965 9925 1409 2233 31.60
3| 765 978 1250 1.638 2353 3182 3482 4.541 5841 7453 1021 1292
4 741 941 1,190 1.533 2132 2776 2999 3747 4604 + 5598 7.173 8610
5| 727 920 1156 1476° 2.015 2571 2757 3365 4032 4773 5893 6.869
6| 718 906 1134 1440 1.943 2447 2612 3143 3707 4317, 5208 5959
71 711 896 1119 1415 1.895 2365 2517 2998 3499 4029 4785 5.408
& | 706  .839 1108 1397 1.860 2306 2449 2896: 3355 3.833 4.501 5:.041
9| 703 833 1100 1383 1,833 2262 2398 2821 3250 3.690 4.297 4781
10| 700 879 1093 1372 1.812 2228 2359 2764 3.169 3581 4.144 4587
11 | 697 876 1.088 1363 1796 2201 2328 2718 3106 3497 4.025 4437
12 | 695 873 1083 1356 1782 2179 2303 2.681 3.055 3428 3930 4318
13 | 694 870 1079 1.350 1771 2160 2282 ; 2650 3.012° 3372 3.852 4221
14| 692 868 1076 1345 1761 2145 2264 2624 2977 3326 3787 -4.140
15 | .691 866 1074 1341 1753 2131 2249 2.602° 2947 3286 3733 4073
16 | 690 £65 1071 1337 1746 2120 2235 2583 2921 3252- 3686 4.015
17 | .689 863 1069 1333 1740 2110 2224 2567 2893 3222 3.646 3965
18 | 688  .862 1067 1330 1734 2101 2214 2552 2878 3.197 3611 3922
19 | .688 861 1066 1328 1729 2093 2205 2539 2851 3,174 3579 3.883
20 | .687 860 1.064 1325 1725 2086 2197 2528 2845 3153 3.552 3.850
21| 686 859 1063 1323 1721 2080 2189 2518 2831. 3.135 3527 3819
22 | 686 858 1061 1321 1717 2074 2183 2508 2819 3.119 3505 3.792
23 | 685 858 1060 1319 1714 2069 2177 2500 2807 32104 3485 3.768
24 |- 685 857 1059 1318 L7l 2064 2172 2492 2797 3.091 3467, 3.745
25| 684 .B56 1058 1316 1708 2060 2167 2485 2787 3.078 3450 3.725
26 | 684 856 1058 1315 1706 2056 2162 2479 2779 . 3.067 3435 3.707
27| 684 855 1057 1314 1703 2.052 2158 2473 2771 3.057 3421 3.690
23 | 683 855 1056 1313 1.701 2.048 2154 2467 2763 3047 3408 3674
29 | 683 854 1055 1311 1699 2045 2.150 2462 2756 3.038 3396 3.659
30 ) 683 834 1.055 1310 1.697 2.042 2147 2457 2750 3.030 3385 3646
40 | 681 851  L.0S0 1303 1.684 2021 2123 2423 2704 2971 3307 3.551
50| 679 849 1047 1299 1676 2009 2.105 2403 2678 2937 3261 349
60 | 679 848  1.0d45 1296 1671 2000 2.099 2390 2660 2915 3232 3460
80 | .678 846 1,043 1292 1.664 1950 2.088 2374 2639 2.887 3.195 34i6
100 | 677 845 1042 1200 1660 1984 2081 2364 2626 2.871 3.174 3.390
1000 | 675 842 1,037 1282 1646 1962 2056 2330 2581 2813 3.098 3300
e« | 674 841 1036 1282 1645 1960 2054 2326 2576 2.807 3.091 3291
50% 60% T70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%
Confidence level C
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Estimating Confidence Intervals:
Statistical Significance

= Are M, & M, significantly different?

Compute t. Select significance level (e.g. sig = 5%)

Consult table for t-distribution: Find t value corresponding
to k-1 degrees of freedom (here, 9)

t-distribution is symmetric: typically upper % points of
distribution shown - look up value for confidence limit
z=sig/2 (here, 0.025)

Ift>zort<-z then tvalue lies in rejection region:

= Reject null hypothesis that mean error rates of M; & M,
are same

= Conclude: statistically significant difference between M,
& M,

Otherwise, conclude that any difference is chance

59



Model Selection: ROC Curves-

= ROC (Receiver Operating
Characteristics) curves: for visual
comparison of classification models

= Originated from signal detection theory

= Shows the trade-off between the true
positive rate and the false positive rate

s The area under the ROC curve is a
measure of the accuracy of the model

= Rank the test tuples in decreasing
order: the one that is most likely to
belong to the positive class appears at
the top of the list

= The closer to the diagonal line (i.e., the
closer the area is to 0.5), the less
accurate is the model

Tl QRS I

[

flze posimve e

Vertical axis
represents the true
positive rate

Horizontal axis rep.
the false positive rate

The plot also shows a
diagonal line

A model with perfect
accuracy will have an

areaof 1.0
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Issues Affecting Model Selection

Accuracy

= classifier accuracy: predicting class label
Speed

= time to construct the model (training time)

= time to use the model (classification/prediction time)
Robustness: handling noise and missing values
Scalability: efficiency in disk-resident databases
Interpretability

= understanding and insight provided by the model

Other measures, e.g., goodness of rules, such as decision tree
size or compactness of classification rules
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Chapter 8. Classification: Basic Concepts

Classification: Basic Concepts
Decision Tree Induction

Bayes Classification Methods
Rule-Based Classification
Model Evaluation and Selection

Techniques to Improve Classification Accuracy: @
Ensemble Methods

Summary
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Ensempie vetnodas: Increasing tne
Accuracy

|(on:huu _»
s Ensemble methods

= Use a combination of models to increase accuracy

= Combine a series of k learned models, M,, M,, ..., M,, with
the aim of creating an improved model M*

= Popular ensemble methods

= Bagging: averaging the prediction over a collection of
classifiers

= Boosting: weighted vote with a collection of classifiers
= Ensemble: combining a set of heterogeneous classifiers
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Bagging: Boostrap Aggregation

Analogy: Diagnosis based on multiple doctors’ majority vote
Training
= Given a set D of d tuples, at each iteration j, a training set D, of d tuples is
sampled with replacement from D (i.e., bootstrap)

= A classifier model M, is learned for each training set D,
Classification: classify an unknown sample X
= Each classifier M. returns its class prediction

= The bagged classifier M* counts the votes and assigns the class with the
most votes to X

Prediction: can be applied to the prediction of continuous values by taking
the average value of each prediction for a given test tuple

Accuracy
= Often significantly better than a single classifier derived from D
= For noise data: not considerably worse, more robust

= Proved improved accuracy in prediction
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Boosting

Analogy: Consult several doctors, based on a combination of
weighted diagnoses—weight assigned based on the previous
diagnosis accuracy

How boosting works?
= Weights are assigned to each training tuple
= Aseries of k classifiers is iteratively learned

= After a classifier M, is learned, the weights are updated to
allow the subsequent classifier, M., ,, to pay more attention to
the training tuples that were misclassified by M.

= The final M* combines the votes of each individual classifier,

where the weight of each classifier's vote is a function of its
accuracy

Boosting algorithm can be extended for numeric prediction

Comparing with bagging: Boosting tends to have greater accuracy,
but it also risks overfitting the model to misclassified data
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Adaboost (Freund and Schapire, 1997)

66

= Given a set of d class-labeled tuples, (X;, y,), --., (X4, Vg
= Initially, all the weights of tuples are set the same (1/d)
m  Generate k classifiers in k rounds. At round i,

Tuples from D are sampled (with replacement) to form a training set
D. of the same size

Each tuple’ s chance of being selected is based on its weight

A classification model M., is derived from D,

Its error rate is calculated using D, as a test set

If a tuple is misclassified, its weight is increased, o.w. it is decreased

= Errorrate: err(X;) is the misclassification error of tuple X;. Classifier M,
error rate is the sum of the weights of the misclassified tuples:

d
error(M,) = Z w, xerr(X;)
7

= The weight of classifier M.” s vote is 1-error(M))

log
error(M)



Random Forest (Breiman 2001)

Random Forest:

= Each classifier in the ensemble is a decision tree classifier and is
generated using a random selection of attributes at each node to
determine the split

= During classification, each tree votes and the most popular class is
returned

Two Methods to construct Random Forest:

= Forest-Rl (random input selection): Randomly select, at each node, F
attributes as candidates for the split at the node. The CART methodology
is used to grow the trees to maximum size

= Forest-RC (random linear combinations): Creates new attributes (or
features) that are a linear combination of the existing attributes (reduces
the correlation between individual classifiers)

Comparable in accuracy to Adaboost, but more robust to errors and outliers

Insensitive to the number of attributes selected for consideration at each
split, and faster than bagging or boosting
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Classification of Class-Imbalanced Data Sets

s Class-imbalance problem: Rare positive example but numerous
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.

= Traditional methods assume a balanced distribution of classes
and equal error costs: not suitable for class-imbalanced data
= Typical methods for imbalance data in 2-class classification:
= Oversampling: re-sampling of data from positive class

= Under-sampling: randomly eliminate tuples from negative
class

= Threshold-moving: moves the decision threshold, t, so that
the rare class tuples are easier to classify, and hence, less
chance of costly false negative errors

= Ensemble techniques: Ensemble multiple classifiers
introduced above

= Still difficult for class imbalance problem on multiclass tasks
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Classification: Basic Concepts
Decision Tree Induction

Bayes Classification Methods
Rule-Based Classification
Model Evaluation and Selection

Techniques to Improve Classification Accuracy:
Ensemble Methods

Summary @
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Summary (l)

Classification is a form of data analysis that extracts models
describing important data classes.

Effective and scalable methods have been developed for decision
tree induction, Naive Bayesian classification, rule-based
classification, and many other classification methods.

Evaluation metrics include: accuracy, sensitivity, specificity,
precision, recall, F measure, and F, measure.

Stratified k-fold cross-validation is recommended for accuracy
estimation. Bagging and boosting can be used to increase overall
accuracy by learning and combining a series of individual models.
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Summary (ll)

Significance tests and ROC curves are useful for model selection.

There have been numerous comparisons of the different

classification methods; the matter remains a research topic

No single method has been found to be superior over all others

for all data sets

Issues such as accuracy, training time, robustness, scalability,
and interpretability must be considered and can involve trade-
offs, further complicating the quest for an overall superior

method

71



References (1)

C. Apte and S. Weiss. Data mining with decision trees and decision rules. Future
Generation Computer Systems, 13, 1997

C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press,
1995

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth International Group, 1984

C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery, 2(2): 121-168, 1998

P. K. Chan and S. J. Stolfo. Learning arbiter and combiner trees from partitioned data
for scaling machine learning. KDD'95

H. Cheng, X. Yan, J. Han, and C.-W. Hsu,

Discriminative Frequent Pattern Analysis for Effective Classification, ICDE'07

H. Cheng, X. Yan, J. Han, and P. S. Yu,

Direct Discriminative Pattern Mining for Effective Classification, ICDE'08

W. Cohen. Fast effective rule induction. ICML'95

G. Cong, K.-L. Tan, A. K. H. Tung, and X. Xu. Mining top-k covering rule groups for
gene expression data. SIGMOD'05

72



References (2)

A.J. Dobson. An Introduction to Generalized Linear Models. Chapman & Hall, 1990.
G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and
differences. KDD'99.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2ed. John Wiley, 2001
U. M. Fayyad. Branching on attribute values in decision tree generation. AAAI’ 94.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. J. Computer and System Sciences, 1997.

J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast decision tree
construction of large datasets. VLDB' 98.

J. Gehrke, V. Gant, R. Ramakrishnan, and W.-Y. Loh, BOAT -- Optimistic Decision Tree
Construction. SIGMOD'99.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-Verlag, 2001.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 1995.

W. Li, J. Han, and J. Pei, CMAR: Accurate and Efficient Classification Based on Multiple
Class-Association Rules, ICDM'01.

73



References (3)

T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity,
and training time of thirty-three old and new classification algorithms. Machine
Learning, 2000.

J. Magidson. The Chaid approach to segmentation modeling: Chi-squared
automatic interaction detection. In R. P. Bagozzi, editor, Advanced Methods of
Marketing Research, Blackwell Business, 1994.

M. Mehta, R. Agrawal, and J. Rissanen. SLIQ : A fast scalable classifier for data
mining. EDBT'96.

T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

S. K. Murthy, Automatic Construction of Decision Trees from Data: A Multi-
Disciplinary Survey, Data Mining and Knowledge Discovery 2(4): 345-389, 1998

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. ECML’ 93.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
J. R. Quinlan. Bagging, boosting, and c4.5. AAAI'96.

74



References (4)

R. Rastogi and K. Shim. Public: A decision tree classifier that integrates building and
pruning. VLDB’ 98.

J. Shafer, R. Agrawal, and M. Mehta. SPRINT : A scalable parallel classifier for data
mining. VLDB’ 96.

J. W. Shavlik and T. G. Dietterich. Readings in Machine Learning. Morgan Kaufmann,
1990.

P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison Wesley,
2005.

S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classification and
Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert
Systems. Morgan Kaufman, 1991.

S. M. Weiss and N. Indurkhya. Predictive Data Mining. Morgan Kaufmann, 1997.

|. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques, 2ed. Morgan Kaufmann, 2005.

X.Yin and J. Han. CPAR: Classification based on predictive association rules. SDM'03

H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical
clusters. KDD'03.






CS412 Midterm Exam Statistics

m Opinion Question Answering:
= Like the style: 70.83%, dislike: 29.16%
= Exam is hard: 55.75%, easy: 0.6%, just right: 43.63%
= Time: plenty:3.03%, enough: 36.96%, not: 60%
m Score distribution: # of students (Total: 180)

= >=90: 24 = 60-69: 37 = <40: 2
= 80-89: 54 = 50-59: 15
= 70-79: 46 s 40-49: 2

m Final grading are based on overall score accumulation
and relative class distributions
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Issues: Evaluating Classification Methods

= Accuracy
= classifier accuracy: predicting class label
= predictor accuracy: guessing value of predicted attributes
s Speed
= time to construct the model (training time)
= time to use the model (classification/prediction time)
s Robustness: handling noise and missing values
= Scalability: efficiency in disk-resident databases
= Interpretability
= understanding and insight provided by the model

s Other measures, e.g., goodness of rules, such as decision tree
size or compactness of classification rules

78



Predictor Error Measures

Measure predictor accuracy: measure how far off the predicted value is from
the actual known value
Loss function: measures the error betw. y. and the predicted value y;

= Absolute error: | y,—vy; |
= Squared error: (y,—vy; )?
Test error (generalization errcpr): the average loss over the test set

! 1\ 2
= Mean absolute error: 2| Yi = Mean squared error: E(;Vi =)
i= i=1
d ad
. < "o, (y _y")z
= Relative absolute error: 2! Réldtive squared error: S WW.
d d
RS 2(3@-—?)2

The mean squared-error exaggerates the presence of outliers

Popularly use (square) root mean-square error, similarly, root relative
squared error
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Methods

SLIQ (EDBT’ 96 — Mehta et al.)

= Builds an index for each attribute and only class list and the
current attribute list reside in memory

SPRINT (VLDB’ 96 — J. Shafer et al.)
s Constructs an attribute list data structure
PUBLIC (VLDB’ 98 — Rastogi & Shim)

= Integrates tree splitting and tree pruning: stop growing the
tree earlier

RainForest (VLDB’ 98 — Gehrke, Ramakrishnan & Ganti)
= Builds an AVC-list (attribute, value, class label)

BOAT (PODS’ 99 — Gehrke, Ganti, Ramakrishnan & Loh)
= Uses bootstrapping to create several small samples
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Data Cube-Based Decision-Tree
Induction

= Integration of generalization with decision-tree induction
(Kamber et al.” 97)

m Classification at primitive concept levels
= E.g., precise temperature, humidity, outlook, etc.
= Low-level concepts, scattered classes, bushy classification-
trees
= Semantic interpretation problems
m Cube-based multi-level classification
= Relevance analysis at multi-levels

= Information-gain analysis with dimension + level
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Veri On Isleme (Data Preprocessing)

Data Preprocessing: Giris “
= Veri Kalitesi

= Veri On islemedeki ana islemler

Veri Temizleme (Data Cleaning)

Veri Uyumu (Data Integration)

Veri Kucultme (Data Reduction)

Veri Donusturme ve Verinin Ayriklastiriimasi (Data

Transformation and Data Discretization)
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Data Warehouse: A Multi-Tiered Architecture
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Veri Kalitesi ( Data Quality)

= Cok boyutlu olarak veri kalitesi kriterleri : Neden On islem yapilir?

Kesinlik (Accuracy) dogru ve yanlis veriler

Tamamlik (Completeness) : kaydedilmemis veya ulasilamayan

veriler

Tutarhlk (Consistency) verilerin bir kisminin glincel olmamasi,
sallantida veriler (dangling)

Guncellik (Timeliness)
Inandiricilik (Believability)

Yorumlanabilirlik (Interpretability): Verinin ne kadar kolay
anlasilacagi
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Veri On Isleme Islemleri

Veri Temizleme (Data cleaning)

= Eksik verilerin doldurulmasi, guraltali verilerin duzeltilmesi, aykiri
verilerin (outlier) temizlenmesi, uyusmazliklarin (inconsistencies)
¢ozimlenmesi

Veri Entegrasyonu (Data integration)

= Farkh veri kaynaklarinin, Veri Kiiplerinin veya Dosyalarin entegre olmasi
Verinin Kucultulmesi (Data reduction)

= Boyut Kuclltme (Dimensionality reduction)

= Sayisal Kuglltme (Numerosity reduction)

= Verinin Sikistirlmasi (Data compression)

Verinin Donustiirilmesi ve Ayriklastiriimasi (Data transformation
and data discretization)

= Normallestirme (Normalization )
= Kavram Hiyerarsisi (Concept hierarchy generation)
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Veri On Isleme (Data Preprocessing)

Data Preprocessing: Giris

= Veri Kalitesi

= Veri On islemedeki ana islemler
Veri Temizleme (Data Cleaning) “
Veri Uyumu (Data Integration)

Veri Kucultme (Data Reduction)

Veri Donusturme ve Verinin Ayriklastiriimasi (Data

Transformation and Data Discretization)
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Veri Temizleme (Data Cleaning)

Gercgek hayattaki veriler kirlidir: Cok sayida makine, insan veya
bilgisayar hatalari, iletim bozulmalari yasanabilir.

= Eksik Veri (incomplete) bazi dzelliklerin eksik olmasi (missing
data), sadece birlesik verinin (aggregate) bulunmasi
= Orn., Meslek=" " (giriimemis)
= Galraltulu Veri (noisy): Gurdltd, hata veya aykir veriler bulunmasi
« Orn., Maas="-10" (hata)
= Tutarsiz Veri (inconsistent): farkh kaynaklardan farkh veriler
gelmesi
« Yas="42", Dogum Tarihi="03/07/2010"
= Eski notlama “1, 2, 3”7, yeni notlama “A, B, C”
= Tekrarl kayitlarda uyusmazlik

€ 7

= Kasith Problemler (Intentional)

= Dogum tarihi bilinmeyen herkese 1 Ocak yazilmasi
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Eksik Veriler
(Incomplete (Missing) Data)

= Veriye her zaman erisilmesi mimkin degildir

= Orn., bazi kayitlarin alin(a)mamis olmasi. Satis
sirasinda musterilerin gelir dlzeyinin yazilmamis
olmasi.

= Eksik veriler genelde asagidaki durumlarda olur:
= Donanimsal bozukluklardan
= Uyusmazlik ylizinden silinen veriler
= Anlasilamayan verilerin girilmemis olmasi
= Veri girisi sirasinda veriye onem verilmemis olmasi
= Verideki degisikliklerin kaydedilmemis olmasi
= Eksik verilerin ¢cozilmesi gerekir
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Eksik veriler nasil ¢cozulur?

= Ihmal etme: Eksik veriler isleme alinmaz, yokmus gibi
davranilir. Kullanilan VM yontemine gore sonuca etkileri

bilinmelidir.
= Eksik verilerin elle doldurulmasi: her zaman mumkin
degildir ve bazan ¢ok uzun ve maliyetli olabilir
= Otomatik olarak doldurulmasi
= Butun eksik veriler icin yeni bir sinif olusturulmasi
("bilinmiyor” gibi)
= Ortalamanin yaziimasi
= Sinif bazinda ortalamalarin yazilmasi
» Bayesian formul ve karar agaci uygulamasi

89



Gurultulu Veri

(Noisy Data)

= Gurultd (Noise): 6lciimdeki rasgele olusan degerler

= Yanlis 6zellik degerleri asagidaki durumlarda olusabilir:

= Veri toplama araclarindaki hatalar

= Veri giris prob
= Veri iletim pro
= Teknoloji sinir

emleri
blemleri
ari

= Isimlendirmed

eki tutarsizliklar

= Veri temizlemesini gerektiren diger durumlar
= Tekrarl kayitlar

= Eksik veriler

= lutarsiz veriler
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Giiriiltiilii Veri Nasil Goziiliir?

Paketleme (Binning)
= Veri siralanir ve esit frekanslarda paketlere boltndr.

= Eksik veriler farkh yontemlerle doldurulur:
= Mean
= Median
« Boundary

Regrezisyon (Regression)

= Regrezisyon fonksiyonlarina tabi tutularak eksik
verilerin girilmesi

Bolutleme (Kimeleme , Clustering)

= Aykiri verilerin bulunmasi ve temizlenmesi

Bilgisayar ve insan bilgisinin ortaklasa kullaniimasi

= detect suspicious values and check by human (e.qg.,
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Veri Temizleme Sureci

= Verideki farkhliklarin yakalanmasi
= Ust verinin (metadata) kullanilmasi (6rn., veri alani (domain,
range) , bagllik (dependency), dagihm (distribution)
= Asin yukla alanlar (Field Overloading)
= Veri Uzerinde kural kontrolleri (unique, consecutive, null)

= Ticari yazihmlarin kullaniimasi
= Bilgi Ovalamasi (Data scrubbing): Basit alan bilgileri kurallarla
kontrol etmek (e.g., postal code, spell-check)

= Veri Denetimi (Data auditing): veriler Gzerinden kural ¢ikarimi
ve kurallara uymayanlarin bulunmasi (6rn., correlation veya
clustering ile aykirilarin (outliers) bulunmasi)

= Veri Gocu ve Entegrasyonu (Data migration and integration)
= Data migration Araclari: Verinin donustlrulmesine izin verir

« ETL (Extraction/Transformation/Loading) Araclar: Genelde grafik
arayuzu ile dontsumu yonetme imkani verir

= Iki farkl isin entegre yiritilmesi
= Iterative / interactive (Orn.., Potter’ s Wheels)
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Asirit Yuklu Alanlar
(Overloaded Fields)

= Asir YUklG Alanlarin Temizlenmesi
= Zincirleme (Chaining)

MI 11 I TAAAAAA AAAC

M: Major Industry Identifier
M + I: Issuer Identification Number
A: Account number, C: Check digit

= Birlestirme (Coupling)

Format of a 16-digit credit card number

= Cok Amaglilik (Multipurpose, _J
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Song

Divide (like ', ") {L

Ornekler

Such,Bob

Ann|Davis

Dole Jerry

Joan|Song

Stewart,Bob Format Bob Stewart
: '(.*), (¥)' to \2\1' :
Anna|Davis ) >Anna Davis
Dole Jerry Jerry Dole
Joan|Marsh Joan Marsh
Split at "'
Bob | Stewart | ) Merges Bob | Stewart
Anna | Davis Anna| Davis
Jerry | Dole Jerry | Dole
Joan | Marsh Joan | Marsh
Name|Math|Bio Name
2 Format T
Ann | 43 |78 | (Gomotes)| Ann [Math:43[Bio:78 Name Name{Math/Bio/Sci
Bob | 96 |54 ——{ Bob [Math:96 Bio:54 Anna|Math|43 Anna| 43 |78
iLFold Anna| Bio [78|unfold(2,3) Bob | 96 |54
I‘imeM = son liame N Bob [Math|96 Joan 79
nn al plt nn atn: .
Ann | Bio | 78 | < Ann | Bio:78 Bob | Bio |54
Bob |Math| 96 Bob |[Math:96 Joan | Sci |79
Bob | Bio | 54 Bob | Bio:54

Vijayshankar Raman and Joseph M. Hellerstein , Potter’s Wheel: An Interactive Data Cleaning System
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Data Integration

Data integration:

=« Combines data from multiple sources into a coherent store
Schema integration: e.qg., A.cust-id = B.cust-#

« Integrate metadata from different sources
Entity identification problem:

« Identify real world entities from multiple data sources, e.g., Bill
Clinton = William Clinton

Detecting and resolving data value conflicts

= For the same real world entity, attribute values from different
sources are different

= Possible reasons: different representations, different scales, e.q.,
metric vs. British units
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Handling Redundancy in Data Integration

= Redundant data occur often when integration of multiple
databases

= Object identification: The same attribute or object
may have different names in different databases

= Derivable data: One attribute may be a “derived”
attribute in another table, e.g., annual revenue

= Redundant attributes may be able to be detected by
correlation analysis and covariance analysis

= Careful integration of the data from multiple sources may
help reduce/avoid redundancies and inconsistencies and
improve mining speed and quality
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Correlation Analysis (Nominal Data)

X2 (chi-square) test

- E (Observed — Expected)’
Expected
The larger the X2 value, the more likely the variables are
related

The cells that contribute the most to the X? value are

those whose actual count is very different from the
expected count

Correlation does not imply causality
« # of hospitals and # of car-theft in a city are correlated
= Both are causally linked to the third variable: population
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Chi-Square Calculation: An Example

Play chess | Not play chess | Sum (row)
Like science fiction 250(90) 200(360) 450
Not like science fiction | 50(210) 1000(840) 1050
Sum(col.) 300 1200 1500

= X2 (chi-square) calculation (numbers in parenthesis are
expected counts calculated based on the data distribution
in the two categories)

,_(250-90° (50-210)° (200-360)° (1000-840)°
& 90 210 360 840

= It shows that like_science_fiction and play_chess are
correlated in the group

=507.93




Correlation Analysis (Numeric Data)

Correlation coefficient (also called Pearson’ s product
moment coefficient)

_Dla-A-B) 3 (ab)-ns

(n-1)o,0, (n-1)o,0,

where n is the number of tuples, 4 and B are the respective
means of A and B, g, and og are the respective standard deviation
of A and B, and %(ab,) is the sum of the AB cross-product.

If r,g > 0, A and B are positively correlated (A’ s values
increase as B’ s). The higher, the stronger correlation.

r,g = 0: independent; r,z < 0: negatively correlated
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Visually Evaluating Correlation

-1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30
Scatter plots

showing the
similarity from
-1to 1.

0.40 0.50 0.60 0.70
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Correlation (viewed as linear
relationship)

= Correlation measures the linear relationship
between objects

= [0 compute correlation, we standardize data
objects, A and B, and then take their dot product

a', =(a, —mean(A))/std(A)
b', = (b, —mean(B))/std(B)

correlation(A,B) = A'*B'
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Covariance (Numeric Data)

= Covariance is similar to correlation N 0k A
Cov(A,B) = E((A—A)(B — B)) = D _i—1(ai — A)(bi — B)

Cov(A, B)

OAOB

where n is the number of tuples, 4 and p are the respective mean or
expected values of A and B, 0, and og are the respective standard
deviation of A and B.

= Positive covariance: If Cov,z > 0, then A and B both tend to be larger
than their expected values.

= Negative covariance: If Cov,z < 0 then if A is larger than its expected
value, B is likely to be smaller than its expected value.
= Independence: Cov,z = 0 but the converse is not true:

= Some pairs of random variables may have a covariance of 0 but are not
independent. Only under some additional assumptions (e.g., the data follow
multivariate normal distributions) does a covariance of 0 imply independence,,

i

Correlation coefficient: 'A.B =



Co-Variance: An Example

Cov(A,B) = E((A — A)(B — B)) = > iy (ai —7;4)(1)12 — B)

It can be simplified in computation as
Cov(A,B) = E(A-B) - AB
Suppose two stocks A and B have the following values in one week:
(2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
Question: If the stocks are affected by the same industry trends, will

their prices rise or fall together?

« E(A)=(2+3+5+4+6)/5=20/5=4

« EB)=(5+8+10+ 11+ 14)/5=48/5=9.6

= Cov(AB) = (2x5+3%x8+5%x10+4%x11+6%x14)/5 -4 x 9.6 =4
Thus, A and B rise together since Cov(A, B) > 0.
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Data Reduction Strategies

Data reduction: Obtain a reduced representation of the data set that
is much smaller in volume but yet produces the same (or almost the
same) analytical results

Why data reduction? — A database/data warehouse may store
terabytes of data. Complex data analysis may take a very long time to
run on the complete data set.

Data reduction strategies

=« Dimensionality reduction, e.g., remove unimportant attributes
= Wavelet transforms
= Principal Components Analysis (PCA)
» Feature subset selection, feature creation

= Numerosity reduction (some simply call it: Data Reduction)
= Regression and Log-Linear Models
= Histograms, clustering, sampling
= Data cube aggregation

= Data compression
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Data Reduction 1: Dimensionality
Reduction

= Curse of dimensionality
= When dimensionality increases, data becomes increasingly sparse

= Density and distance between points, which is critical to clustering, outlier
analysis, becomes less meaningful

= The possible combinations of subspaces will grow exponentially
= Dimensionality reduction

= Avoid the curse of dimensionality

= Help eliminate irrelevant features and reduce noise

= Reduce time and space required in data mining

= Allow easier visualization
= Dimensionality reduction techniques

= Wavelet transforms

= Principal Component Analysis

= Supervised and nonlinear techniques (e.g., feature selection)
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Mapping Data to a New Space

= Fourier transform
= Wavelet transform

15 1 —
10} 1 of
5 1ol
on | of
_5- 0_ J
It Ml

M ] ket
A 02 04 06 08 10 10 20 30 40 50 60 70 80 90
Time (seconds)
Two Sine Waves Two Sine Waves + Noise Frequency
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What Is Wavelet Transform?

Decomposes a signal into
different frequency subbands

= Applicable to n-
dimensional signals

Data are transformed to
preserve relative distance
petween objects at different
evels of resolution

Allow natural clusters to
become more distinguishable

Used for image compression
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Wavelet Transformation A

Haar2 Daubechie4

Discrete wavelet transform (DWT) for linear signal
processing, multi-resolution analysis

Compressed approximation: store only a small fraction of
the strongest of the wavelet coefficients

Similar to discrete Fourier transform (DFT), but better
lossy compression, localized in space

Method:

Length, L, must be an integer power of 2 (padding with 0" s, when
necessary)

Each transform has 2 functions: smoothing, difference
Applies to pairs of data, resulting in two set of data of length L/2
Applies two functions recursively, until reaches the desired length

110



Wavelet Decomposition

= Wavelets: A math tool for space-efficient hierarchical
decomposition of functions

= S=1[2,2,0, 2, 3,5, 4, 4] can be transformed to S. =
[23/41 _11/41 1/2/ OI OI _11 -11 O]

= Compression: many small detail coefficients can be

replaced by 0’ s, and only the significant coefficients are

retained
Resolution Averages Detail Coefficients
8 12, 2,0, 2, 3, 5, 4, 4]
4 12, 1, 4, 4] 0, —1, —1, 0]
2 15, 4] (5, 0]
1 [25] [—15]
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Haar Wavelet Coefficients

Coefficient “Supports”

Hierarchical 2.75 +
decomposition @
structure (a.k.a. + 125 LT
error tree”) +

0.5 LT

0 +

2 2rd 2 03 5 4 4
— v -1 :
S
Original frequency distribution 0 1
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Why Wavelet Transform?

Use hat-shape filters

= Emphasize region where points cluster

= Suppress weaker information in their boundaries
Effective removal of outliers

= Insensitive to noise, insensitive to input order
Multi-resolution

= Detect arbitrary shaped clusters at different scales
Efficient

= Complexity O(N)

Only applicable to low dimensional data
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Principal Component Analysis (PCA)

Find a projection that captures the largest amount of variation in data

The original data are projected onto a much smaller space, resulting
in dimensionality reduction. We find the eigenvectors of the
covariance matrix, and these eigenvectors define the new space

%9)
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Principal Component Analysis (Steps)

= Given N data vectors from n-dimensions, find kK < n orthogonal vectors
(principal components) that can be best used to represent data

Normalize input data: Each attribute falls within the same range

Compute k orthonormal (unit) vectors, i.e., principal components

Each input data (vector) is a linear combination of the k principal
component vectors

The principal components are sorted in order of decreasing
“significance” or strength

Since the components are sorted, the size of the data can be
reduced by eliminating the weak components, i.e., those with low
variance (i.e., using the strongest principal components, it is
possible to reconstruct a good approximation of the original data)

= Works for numeric data only
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Attribute Subset Selection

= Another way to reduce dimensionality of data
= Redundant attributes

= Duplicate much or all of the information contained in
one or more other attributes

= E.qg., purchase price of a product and the amount of
sales tax paid
= Irrelevant attributes

= Contain no information that is useful for the data
mining task at hand

=« E.qg., students' ID is often irrelevant to the task of
predicting students' GPA
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Heuristic Search in Attribute Selection

= There are 29 possible attribute combinations of d attributes
= Typical heuristic attribute selection methods:

= Best single attribute under the attribute independence
assumption: choose by significance tests

= Best step-wise feature selection:
= The best single-attribute is picked first
= Then next best attribute condition to the first, ...
= Step-wise attribute elimination:
= Repeatedly eliminate the worst attribute
= Best combined attribute selection and elimination
=« Optimal branch and bound:
= Use attribute elimination and backtracking
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Attribute Creation (Feature Generation)

= Create new attributes (features) that can capture the
important information in a data set more effectively than

the original ones
= Three general methodologies
= Attribute extraction
= Domain-specific
= Mapping data to new space (see: data reduction)

= E.g., Fourier transformation, wavelet
transformation, manifold approaches (not covered)

= Attribute construction

= Combining features (see: discriminative frequent
patterns in Chapter 7)

= Data discretization

118



Data Reduction 2: Numerosity
Reduction

= Reduce data volume by choosing alternative, smaller
forms of data representation

= Parametric methods (e.g., regression)

= Assume the data fits some model, estimate model
parameters, store only the parameters, and discard
the data (except possible outliers)

=« EX.: Log-linear models—obtain value at a point in m-
D space as the product on appropriate marginal
subspaces

= Non-parametric methods
= Do not assume models
=« Major families: histograms, clustering, sampling, ...
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Parametric Data Reduction:
Regression and Log-Linear Models

= Linear regression

= Data modeled to fit a straight line

= Often uses the least-square method to fit the line
= Multiple regression

= Allows a response variable Y to be modeled as a
linear function of multidimensional feature vector

= Log-linear model

= Approximates discrete multidimensional probability
distributions
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+y
Regression Analysis

= Regression analysis: A collective name for
techniques for the modeling and analysis of
numerical data consisting of values of a
dependent variable (also called .
response variable or measurement) and X1 X
of one or more independent variables (aka.
explanatory variables or predictors)

= Used for prediction
= The parameters are estimated so as to give  (including forecasting of

a "best fit" of the data time-series data), inference,
hypothesis testing, and
modeling of causal
relationships

= Most commonly the best fit is evaluated by
using the least squares method, but
other criteria have also been used
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Regress Analysis and Log-Linear
Models

= Linear regression: Y=wX+ b

= Two regression coefficients, w and b, specify the line and are to be
estimated by using the data at hand

= Using the least squares criterion to the known values of Y, Y, ...,
XieXsomt

= Multiple regression: Y =b, + b; X; + b, X

= Many nonlinear functions can be transformed into the above
= Log-linear models:

= Approximate discrete multidimensional probability distributions

= Estimate the probability of each point (tuple) in a multi-dimensional
space for a set of discretized attributes, based on a smaller subset
of dimensional combinations

= Useful for dimensionality reduction and data smoothing
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Histogram Analysis

= Divide data into buckets and 4
store average (sum) for each s
bucket 3.

= Partitioning rules: 25

= Equal-width: equal bucket 4.
range I5.

= Equal-frequency (or equal- 4,
depth)

5_
0_

10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
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Clustering

Partition data set into clusters based on similarity, and
store cluster representation (e.g., centroid and diameter)

only

Can be very effective if data is clustered but not if data
is “smeared”

Can have hierarchical clustering and be stored in multi-
dimensional index tree structures

There are many choices of clustering definitions and
clustering algorithms

Cluster analysis will be studied in depth in Chapter 10
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Sampling

Sampling: obtaining a small sample s to represent the
whole data set NV

Allow a mining algorithm to run in complexity that is
potentially sub-linear to the size of the data

Key principle: Choose a representative subset of the data

=« Simple random sampling may have very poor
performance in the presence of skew

=« Develop adaptive sampling methods, e.g., stratified
sampling:

Note: Sampling may not reduce database I/Os (page at a
time)
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Types of Sampling

Simple random sampling

= There is an equal probability of selecting any particular
item

Sampling without replacement

= Once an object is selected, it is removed from the
population

Sampling with replacement
= A selected object is not removed from the population
Stratified sampling:

« Partition the data set, and draw samples from each
partition (proportionally, i.e., approximately the same
percentage of the data)

= Used in conjunction with skewed data
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Sampling: With or without Replacement

T

)
oR .@‘
$Y\S\N\6 aﬁdom\—//

: j¢ X
ST e Wi
Q \
Se?\aceme“)

{

GCCENER ram  wio
w
S
w

Raw Data



Sampling: Cluster or Stratified
Sampling

Raw Data Cluster/Stratified Sample

128



Data Cube Aggregation

The lowest level of a data cube (base cuboid)
=« The aggregated data for an individual entity of interest
= E.g., a customer in a phone calling data warehouse
Multiple levels of aggregation in data cubes
= Further reduce the size of data to deal with
Reference appropriate levels

= Use the smallest representation which is enough to
solve the task

Queries regarding aggregated information should be
answered using data cube, when possible
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Data Reduction 3: Data Compression

= String compression
= There are extensive theories and well-tuned algorithms

= Typically lossless, but only limited manipulation is
possible without expansion

= Audio/video compression
= Typically lossy compression, with progressive refinement

= Sometimes small fragments of signal can be
reconstructed without reconstructing the whole

= Time sequence is not audio
= Typically short and vary slowly with time

= Dimensionality and numerosity reduction may also be
considered as forms of data compression
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Data Compression
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= Major Tasks in Data Preprocessing
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Data Transformation and Data Discretization “

Summary
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Data Transformation

= A function that maps the entire set of values of a given attribute to a
new set of replacement values s.t. each old value can be identified
with one of the new values

= Methods
= Smoothing: Remove noise from data

Attribute/feature construction

= New attributes constructed from the given ones

Aggregation: Summarization, data cube construction

Normalization: Scaled to fall within a smaller, specified range
= Min-max normalization
= Z-Score normalization
= hormalization by decimal scaling

= Discretization: Concept hierarchy climbing 133



Normalization

= Min-max normalization: to [new_min,, new_max,]

\ V — MiNa . .
V'= — (new__max.—new_min.) + new_ min.
max.— mina

= Ex. Let income range $12,000 to $98,000 normalized to [0.0,
1.0]. Then $73,000 is mapped to  95000-12 OOO( 0-0)+0=0.716

= Z-score normalization (J: mean, o0: standard deviation):

VYV — U4
V= i
O

73,600 - 54,000
= Ex. Let p = 54,000, 0 = 16,000. Then — 500  ~ 2>

= Normalization by decimal scaling

Vv " . ;
V'= Where J 1s the smallest integer such that Max(|v' |) <1

10’
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Discretization

= Three types of attributes

Nominal—values from an unordered set, e.g., color, profession

Ordinal—values from an ordered set, e.g., military or academic
rank

Numeric—real numbers, e.qg., integer or real numbers

= Discretization: Divide the range of a continuous attribute into intervals

Interval labels can then be used to replace actual data values
Reduce data size by discretization

Supervised vs. unsupervised

Split (top-down) vs. merge (bottom-up)

Discretization can be performed recursively on an attribute
Prepare for further analysis, e.g., classification
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Data Discretization Methods

= [ypical methods: All the methods can be applied recursively
=« Binning
= Top-down split, unsupervised
= Histogram analysis
= Top-down split, unsupervised

= Clustering analysis (unsupervised, top-down split or
bottom-up merge)

= Decision-tree analysis (supervised, top-down split)

= Correlation (e.g., x?) analysis (unsupervised, bottom-up
merge)
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Simple Discretization: Binning

= Equal-width (distance) partitioning
= Divides the range into N intervals of equal size: uniform grid
« if Aand B are the lowest and highest values of the attribute, the
width of intervals will be: W = (B-A)/N.
= The most straightforward, but outliers may dominate presentation
= Skewed data is not handled well
= Equal-depth (frequency) partitioning
= Divides the range into N intervals, each containing approximately
same number of samples

= Good data scaling
= Managing categorical attributes can be tricky
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Binning Methods for Data Smoothing

o Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26,
28, 29, 34

* Partition into equal-frequency (equi-depth) bins:
-Bin1:4,8,9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34

* Smoothing by bin means:
-Bin1:9,9,9,9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29

* Smoothing by bin boundaries:
- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34
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Labels

(Binning vs. Clustering)
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K-means clustering leads to better results

Equal frequency (binning)
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Discretization by Classification &
Correlation Analysis

= Classification (e.g., decision tree analysis)
= Supervised: Given class labels, e.qg., cancerous vs. benign
= Using entropy to determine split point (discretization point)
= Top-down, recursive split
= Details to be covered in Chapter 7

= Correlation analysis (e.g., Chi-merge: x2-based discretization)
= Supervised: use class information

= Bottom-up merge: find the best neighboring intervals (those

having similar distributions of classes, i.e., low x? values) to merge

= Merge performed recursively, until a predefined stopping condition
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Concept Hierarchy Generation

Concept hierarchy organizes concepts (i.e., attribute values)
hierarchically and is usually associated with each dimension in a data
warehouse

Concept hierarchies facilitate drilling and rolling in data warehouses to
view data in multiple granularity

Concept hierarchy formation: Recursively reduce the data by collecting
and replacing low level concepts (such as numeric values for age) by
higher level concepts (such as youth, adult, or senior)

Concept hierarchies can be explicitly specified by domain experts and/
or data warehouse designers

Concept hierarchy can be automatically formed for both numeric and
nominal data. For numeric data, use discretization methods shown.
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Concept Hierarchy Generation
for Nominal Data

Specification of a partial/total ordering of attributes
explicitly at the schema level by users or experts

= Street < city < state < country

Specification of a hierarchy for a set of values by explicit
data grouping

= {Urbana, Champaign, Chicago} < Illinois
Specification of only a partial set of attributes
= E.g., only street < city, not others

Automatic generation of hierarchies (or attribute levels) by
the analysis of the number of distinct values

= E.g., for a set of attributes: {street, city, state, country}
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Automatic Concept Hierarchy Generation

= Some hierarchies can be automatically generated based on
the analysis of the number of distinct values per attribute in
the data set

= The attribute with the most distinct values is placed at
the lowest level of the hierarchy

= Exceptions, e.g., weekday, month, quarter, year

< country - 15 distinct values
< province or_state 365 distinct values

- ity 3567 distinct values
( Street ) 674,339 distinct values
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Summary “
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Summary

Data quality: accuracy, completeness, consistency, timeliness,
believability, interpretability

Data cleaning: e.g. missing/noisy values, outliers
Data integration from multiple sources:
« Entity identification problem
= Remove redundancies
= Detect inconsistencies
Data reduction
=« Dimensionality reduction
= Numerosity reduction
= Data compression
Data transformation and data discretization
= Normalization
=« Concept hierarchy generation
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Kaynaklar

= Data Mining:
Concepts and
Techniques, Third
Edition (The Morgan
Kaufmann Series in
Data Management
Systems) 3rd Edition

i, s "‘ Jiawei Han (Author),
f Micheline Kamber
2% (Author), Jian Pei

DATA MI NING (Author)
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