Veri Ambarları ve OLAP Şadi Evren ŞEKER SEKER.com www.SadiEvrenSEKER.com YouTube Kanalı: Bilgisayar Kavramları

Kaynaklar

- Data Mining: Concepts and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems) 3rd Edition
- by
 Jiawei Han (Author),
 Micheline Kamber
 (Author), Jian Pei
 (Author)

90'lar ve OLAP

- Veri Ambarı Teknolojileri (OLAP'a ilk geçişler ve OLTP'lerdeki zorluklardan dolayı geçici veri ambarları oluşturma fikri)
- İhtiyaçlar
- Online Analytical Processing
- OLTP: Online Transaction Processing

OLTP vs OLAP

w SadiEvrenSE	OLTP Sad	OLAP SEKER com www.Sadik
Kullanıcılar	clerk, IT professional	knowledge worker
Fonksiyonlar	day to day operations	decision support
DB Tasarım	application-oriented	subject-oriented
Veri w.SadiEvrenSE	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
Kullanım	repetitive	ad-hoc
Erişim	read/write index/hash on prim. key	lots of scans
İşlerin boyu	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB boyutu	100MB-GB	100GB-TB
Metrikler	transaction throughput	query throughput, response

www.SadiEvrenSEKER.cojki Kavram

- OLTP Online Transaction Processing
 - Örneğin : Banka hesaplarındaki hareketler, bilet işlemleri
 - Genelde küçük transactionlar
 - Verinin küçük bir kısmı ile ilgili
 - Sık ve sürekli tekrarlar şeklinde çalıştırılıyor
- OLAP Online Analytical Processing
 - Büyük transactionlar
 - Karmaşık sorgular
 - Daha büyük veriye erişim
 - Sık yapılmayan sorgular

Temel Kavramlar

- Yıldız Şeması (Star Schema)
 - Fact Table : Sık güncellenen, çoğunlukla ekleme yapılan, ve genelde çok büyük tablolardır
 - Dimension Table: Sık güncellenmeyen, çok bi Join olmayan tablolar

www.sadiEvrensEKEStar Schema

www.sadiEvreSnowflakeSchema

www.sadiEvrensFactnConstellation

Star Schema

- Yavaştır : Indeks oluşturulması, joinler, sorguların özel olarak calıştırılması
 - Materialized View

Veri Küpleri Endüstri Bölge Yıllar (Data Cube) Kategori Ülke Çeyrek Ürün Şehir Ay Hafta Küp Şube Gün

- Aslında Küp Değildirler
- Çok boyutlu OLAP (multidimensional OLAP) olarak da isimlendirilirler
- Fact Data hücrelerde durmaktadır
- Slide, Edge ve Corner üzerinde aggregated data tutulmaktadır

Örnek Veri Küpü

Bazı Aggregate Taktikleri

- Dimension attribute şayet key değilse genelde aggregate edilir
- <u>Distributive</u>: if the result derived by applying the function to n
 aggregate values is the same as that derived by applying the
 function on all the data without partitioning
 - E.g., count(), sum(), min(), max()
- Algebraic: if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - E.g., avg(), min_N(), standard_deviation()
- Holistic: if there is no constant bound on the storage size needed to describe a subaggregate.
- E.g., median(), mode(), rank()

Cube: A Lattice of Cuboids

Typical OLAP Operations

- Roll up (drill-up): özetleme
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): detaylandırma
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

www.sadievA Star-Net Query Model

Browsing a Data Cube

ation apabilities www.Sadii tive manipulation

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Implementation
- Data Generalization by Attribute-Oriented Induction
- Summary

Data Warehouse: A Multi-Tiered Architecture

Design of Data Warehouse: A Business Analysis Framework

- Four views regarding the design of a data warehouse
 - Top-down view
 - allows selection of the relevant information necessary for the data warehouse
 - Data source view
 - exposes the information being captured, stored, and managed by operational systems
 - Data warehouse view
 - consists of fact tables and dimension tables
 - Business query view
 - sees the perspectives of data in the warehouse from the view of end-user

Data Warehouse Design Process

- Top-down, bottom-up approaches or a combination of both
 - <u>Top-down</u>: Starts with overall design and planning (mature)
 - Bottom-up: Starts with experiments and prototypes (rapid)
- From software engineering point of view
 - Waterfall: structured and systematic analysis at each step before proceeding to the next
 - Spiral: rapid generation of increasingly functional systems, short turn around time, quick turn around
- Typical data warehouse design process
 - Choose a business process to model, e.g., orders, invoices, etc.
 - Choose the <u>grain</u> (atomic level of data) of the business process
 - Choose the dimensions that will apply to each fact table record
 - Choose the measure that will populate each fact table record

Data Warehouse Development: A Recommended Approach **Multi-Tier Data** Warehouse **Distributed Data Marts Enterprise Data** Data Data Warehouse Mart Mart Model refinement Model refinement Define a high-level corporate data model

Data Warehouse Usage

- Three kinds of data warehouse applications
 - Information processing
 - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
 - Analytical processing
 - multidimensional analysis of data warehouse data
 - supports basic OLAP operations, slice-dice, drilling, pivoting
 - Data mining
 - knowledge discovery from hidden patterns
 - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools

From On-Line Analytical Processing (OLAP) to On Line Analytical Mining (OLAM)

- Why online analytical mining?
 - High quality of data in data warehouses
 - DW contains integrated, consistent, cleaned data
 - Available information processing structure surrounding data warehouses
 - ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools
 - OLAP-based exploratory data analysis
 - Mining with drilling, dicing, pivoting, etc.
 - On-line selection of data mining functions
 - Integration and swapping of multiple mining functions, algorithms, and tasks

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Data Generalization by Attribute-Oriented Induction
- Summary EKER.com

Efficient Data Cube Computation

- Data cube can be viewed as a lattice of cuboids
 - The bottom-most cuboid is the base cuboid
 - The top-most cuboid (apex) contains only one cell
 - How many cuboids in an n-dimensional cube with L levels?

$$T = \prod_{i=1}^{n} (L_i + 1)$$

- $T = \prod_{i=1}^{n} (L_i + 1)$ Materialization of data i cube
 - Materialize <u>every</u> (cuboid) (full materialization), <u>none</u> (no materialization), or some (partial materialization)
 - Selection of which cuboids to materialize
 - · Based on size, sharing, access frequency, etc.

The "Compute Cube" Operator

Cube definition and computation in DMQL define cube sales [item, city, year]: sum (sales_in_dollars) compute cube sales

Transform it into a SQL-like language (with a new operator cube introduced by Gray et al. 96)

(city)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year

Need compute the following Group-Bys

(date, product, customer), (date, product), (date, customer), (product, customer), (city, item) (date), (product), (customer)

(item) (year) (city, year) (item, year) (city, item, year)

Indexing OLAP Data: Bitmap

- Index on a particular column
- Each value in the column has a bit vector: bit-op is fast
- The length of the bit vector: # of records in the base table
- The i-th bit is set if the i-th row of the base table has the value for the indexed column
- not suitable for high cardinality domains
- A recent bit compression technique, Word-Aligned Hybrid (WAH), makes it work for high cardinality domain as well [Wu, et al. TODS' 06]

Base table

Cust Region Type C1 Retail Asia C2 Dealer Europe C3 Asia Dealer America Retail C4 C5 Europe Dealer

Index on Region

RecID	Asia	Europe	America					
1	1	0	0					
2	0	1	0					
3	1	0	0					
4	0	0	1					
5	0	1	0					

Index on Type

RecID	Retail	Dealer
1	1	0
2	0	1
3	0	1
4	1	0
5	0	1

Indexing OLAP Data: Join Indices

- Join index: JI(R-id, S-id) where R (R-id, ...) ⊳⊲ S (S-id, ...)
- Traditional indices map the values to a list of record ids
 - It materializes relational join in JI file and speeds up relational join
- In data warehouses, join index relates the values of the <u>dimensions</u> of a start schema to <u>rows</u> in the fact table.
 - E.g. fact table: Sales and two dimensions city
 and product
 - A join index on city maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city
 - Join indices can span multiple dimensions

Efficient Processing OLAP Queries

- **Determine which operations** should be performed on the available cuboids
 - Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g.,
 dice = selection + projection
- Determine which materialized cuboid(s) should be selected for OLAP op.
 - Let the query to be processed be on $\{brand, province_or_state\}$ with the condition "year = 2004", and there are 4 materialized cuboids available:
 - 1) { year, item_name, city}
 - 2) { year, brand, country}
 - 3) { year, brand, province_or_state}
 - 4) { item_name, province_or_state} where year = 2004 Which should be selected to process the query?
- Explore indexing structures and compressed vs. dense array structs in MOLAP

OLAP Server Architectures

- Relational OLAP (ROLAP)
 - Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware
 - Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
 - Greater scalability
- Multidimensional OLAP (MOLAP)
 - Sparse array-based multidimensional storage engine
 - Fast indexing to pre-computed summarized data
- Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)
 - Flexibility, e.g., low level: relational, high-level: array
- Specialized SQL servers (e.g., Redbricks)
 - Specialized support for SQL queries over star/snowflake schemas

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Data Generalization by Attribute-Oriented Induction
- Summary

www.sadAttribute-Oriented Induction

- Proposed in 1989 (KDD '89 workshop)
- Not confined to categorical data nor particular measures
- How it is done?
 - Collect the task-relevant data (initial relation) using a relational database query
 - Perform generalization by <u>attribute removal</u> or <u>attribute</u> generalization
 - Apply aggregation by merging identical, generalized tuples and accumulating their respective counts
 - Interaction with users for knowledge presentation

Attribute-Oriented Induction: An Example

Example: Describe general characteristics of graduate students in the University database

 Step 1. Fetch relevant set of data using an SQL statement, e.g.,

```
Select * (i.e., name, gender, major, birth_place,
  birth_date, residence, phone#, gpa)
from student
where student_status in {"Msc", "MBA", "PhD" }
```

- Step 2. Perform attribute-oriented induction
- Step 3. Present results in generalized relation, cross-tab, or rule forms

Class Characterization: An Example

Initial Relation

Name	Gender	Major	Birth-Place	Birth_date	Residence	Phone #	GPA
Jim Woodman	M	CS	Vancouver,BC, Canada	8-12-76	3511 Main St., Richmond	687-4598	3.67
Scott Lachance	M	CS	Montreal, Que, Canada	28-7-75	345 1st Ave., Richmond	253-9106	3.70
Laura Lee	e F SEK	Physics	Seattle, WA, USA	25-8-70	125 Austin Ave.,	420-5232	3.83
•••	•••	•••	•••	•••	Burnaby	•••	•••
Removed	Retained	Sci,Eng, Bus	Country	Age range	City KER.C	Removed	Excl, VG,

	Gender	Major	Birth_region	Age_range	Residence	GPA	Count	/ww.Sadil
Prime	M	Science	Canada	20-25	Richmond	Very-good	16	
Generalized	vrenS	Science	Foreign	25-30	Burnaby	Excellent	22	vww.Sadil
Relation	• • •							
	vrens	EK	Dirth Dagion	ww.Sad	iEvrenS	EKER.co	m v	vww.Sadil

Birth_Region	Canada	Foreign	Total
Gender	Canada	Foreign	EKER.
M	16	14	30
ER.com wv	10	22	32
Total	26	36	62

Basic Principles of Attribute-Oriented Induction

- <u>Data focusing</u>: task-relevant data, including dimensions, and the result is the *initial relation*
- Attribute-removal: remove attribute A if there is a large set of distinct values for A but (1) there is no generalization operator on A, or (2) A's higher level concepts are expressed in terms of other attributes
- Attribute-generalization: If there is a large set of distinct values for A, and there exists a set of generalization operators on A, then select an operator and generalize A
 - <u>Attribute-threshold control</u>: typical 2-8, specified/default
 - Generalized relation threshold control: control the final relation/ rule size

Attribute-Oriented Induction: Basic Algorithm

- <u>InitialRel</u>: Query processing of task-relevant data, deriving the *initial relation*.
- PreGen: Based on the analysis of the number of distinct values in each attribute, determine generalization plan for each attribute: removal? or how high to generalize?
- PrimeGen: Based on the PreGen plan, perform generalization to the right level to derive a "prime generalized relation", accumulating the counts.
- Presentation: User interaction: (1) adjust levels by drilling,
 (2) pivoting, (3) mapping into rules, cross tabs,
 visualization presentations.

Presentation of Generalized Results

Generalized relation:

 Relations where some or all attributes are generalized, with counts or other aggregation values accumulated.

Cross tabulation:

- Mapping results into cross tabulation form (similar to contingency tables).
- <u>Visualization techniques</u>:
- Pie charts, bar charts, curves, cubes, and other visual forms.
- Quantitative characteristic rules:
 - Mapping generalized result into characteristic rules with quantitative $grad(x) \land male(x) \Rightarrow$ information associated with it e.g. $birth_region(x) = Canada''[t:53\%] \lor birth_region(x) = foreign''[t:47\%]$

www.SadiEvre Mining Class Comparisons

- Comparison: Comparing two or more classes
- Method:
 - Partition the set of relevant data into the target class and the contrasting class(es)
 - Generalize both classes to the same high level concepts
 - Compare tuples with the same high level descriptions
 - Present for every tuple its description and two measures
 - support distribution within single class
 - comparison distribution between classes
 - Highlight the tuples with strong discriminant features
- Relevance Analysis:
 - Find attributes (features) which best distinguish different classes

Concept Description vs. Cube-Based OLAP

Similarity:

- Data generalization
- Presentation of data summarization at multiple levels of abstraction
- Interactive drilling, pivoting, slicing and dicing

Differences:

- OLAP has systematic preprocessing, query independent, and can drill down to rather low level
- AOI has automated desired level allocation, and may perform dimension relevance analysis/ranking when there are many relevant dimensions
- AOI works on the data which are not in relational forms

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Data Generalization by Attribute-Oriented Induction
- Summary

Summary

- Data warehousing: A multi-dimensional model of a data warehouse
 - A data cube consists of dimensions & measures
 - Star schema, snowflake schema, fact constellations
 - OLAP operations: drilling, rolling, slicing, dicing and pivoting
- Data Warehouse Architecture, Design, and Usage
 - Multi-tiered architecture
 - Business analysis design framework
 - Information processing, analytical processing, data mining, OLAM (Online) **Analytical Mining)**
 - Implementation: Efficient computation of data cubes
 - Partial vs. full vs. no materialization
 - Indexing OALP data: Bitmap index and join index
 - OLAP query processing
 - OLAP servers: ROLAP, MOLAP, HOLAP
 - Data generalization: Attribute-oriented induction

References (I)

- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB' 96
- D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD' 97
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE' 97
- S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
 - E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27, July 1993.
 - J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.
 - A. Gupta and I. S. Mumick. Materialized Views: Techniques, Implementations, and Applications. MIT Press, 1999.
 - J. Han. Towards on-line analytical mining in large databases. *ACM SIGMOD Record*, 27:97-107, 1998.
 - V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. SIGMOD' 96
 - J. Hellerstein, P. Haas, and H. Wang. Online aggregation. SIGMOD'97

References (II)

- C. Imhoff, N. Galemmo, and J. G. Geiger. Mastering Data Warehouse Design: Relational and Dimensional Techniques. John Wiley, 2003
- W. H. Inmon. Building the Data Warehouse. John Wiley, 1996
- R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. 2ed. John Wiley, 2002
- P. O' Neil and G. Graefe. Multi-table joins through bitmapped join indices. *SIGMOD Record*, 24:8–11, Sept. 1995.
- P. O'Neil and D. Quass. Improved query performance with variant indexes. SIGMOD'97
- Microsoft. OLEDB for OLAP programmer's reference version 1.0. In http://www.microsoft.com/ data/oledb/olap, 1998
- S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays. ICDE'94
- A. Shoshani. OLAP and statistical databases: Similarities and differences. PODS' 00.
- D. Srivastava, S. Dar, H. V. Jagadish, and A. V. Levy. Answering queries with aggregation using views. VLDB'96
- P. Valduriez. Join indices. ACM Trans. Database Systems, 12:218-246, 1987.
- J. Widom. Research problems in data warehousing. CIKM' 95
- K. Wu, E. Otoo, and A. Shoshani, Optimal Bitmap Indices with Efficient Compression, ACM Trans. on Database Systems (TODS), 31(1): 1-38, 2006