

Syllabus – Ders İzlencesi + www.SadiEvrenSEKER.com -> Courses -> Data Mining, Istanbul Commerce University + http://sadievrenseker.com/wp/?p=558 + Slide'lar: http://web.engr.illinois.edu/~hanj/bk3/bk3_slidesindex.htm

What Is Data Mining?

- + Data mining (knowledge discovery from data)
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data (interesting patterns?)
 - + Data mining: a misnomer? (erro de nome)
- + Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- + Watch out: Is everything "data mining"?
 - + (Deductive) query processing
 - + Expert systems or small ML/statistical programs

Why Data Mining? —Potential Applications

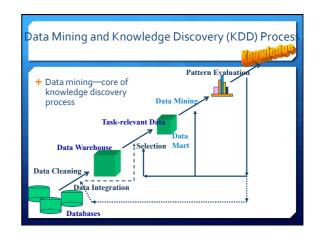
- + Data analysis and decision support
 - + Market analysis and management
 - Target marketing, customer relationship management (CRM), market basket analysis, cross selling, market segmentation
 - + Risk analysis and management
 - Forecasting, customer retention, improved underwriting, quality control, competitive analysis
- + Fraud detection and detection of unusual patterns (outliers)
- + Other Applications
- + Text mining (news group, email, documents) and Web mining
- + Medical data mining
- + Bioinformatics and bio-data analysis

Example 1: Market Analysis and Management

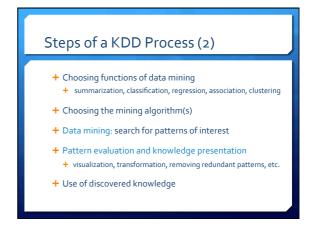
- + Where does the data come from?
 - + Credit card transactions, loyalty cards, discount coupons, customer complaint calls, plus (public) lifestyle studies
- + Target marketing
 - + Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.,
 - + Determine customer purchasing patterns over time

Market Analysis and Management

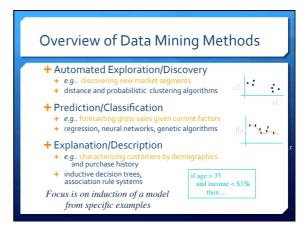
- + Cross-market analysis—Find associations/corelations between product sales, & predict based on such association
- + Customer profiling—What types of customers buy what products (clustering or classification)
- + Customer requirement analysis
 - + Identify the best products for different customers
 - + Predict what factors will attract new customers

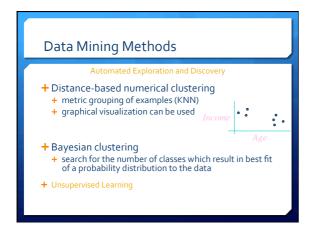

Example 2: Corporate Analysis & Risk Management

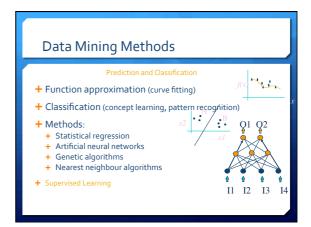
- + Finance planning and asset evaluation
 - + cash flow analysis and prediction (feature development)
 - + contingent claim analysis to evaluate assets (componente do ativo)
 - + cross-sectional and time series analysis (trend analysis, etc.)
- + Resource planning
 - + summarize and compare the resources and spending
- + Competition
 - + monitor competitors and market directions
 - group customers into classes and a class-based pricing procedure
 - set pricing strategy in a highly competitive market

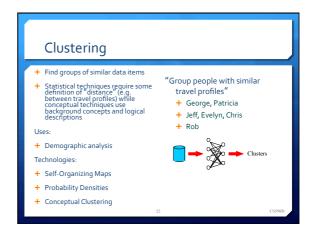

Example 3: Fraud Detection & Mining Unusual Patterns


- + Approaches:
- + Unsupervised Learning: Clustering
- + Supervised Learning: Neuronal Networks
- + model construction for frauds
- + outlier analysis






Steps of a KDD Process (1) Learning the application domain relevant prior knowledge and goals of application Creating a target data set: data selection Data cleaning and preprocessing: (may take 60% of effort!) Understand data (statistics) Data reduction and transformation Find useful features, dimensionality/variable reduction, invariant representation



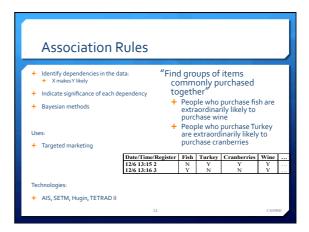
Generalization
The objective of learning is to achieve good generalization to new cases, otherwise just use a look-up table.
Generalization can be defined as a mathematical interpolation or regression over a set of training points:

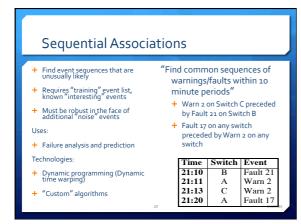
Classification

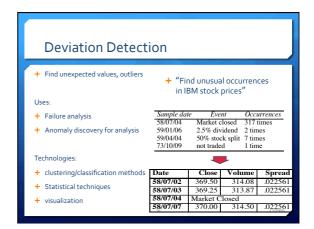
+ Find ways to separate data items into pre-defined groups
+ We know X and Y belong together, find other things in same group
+ Requires "training data": Data items where group is known

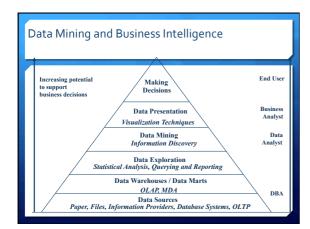
Uses:
+ Profiling

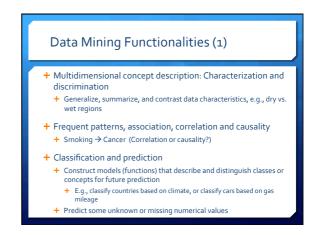
Technologies:
+ Generate decision trees (results are human understandable)
+ Neural Nets

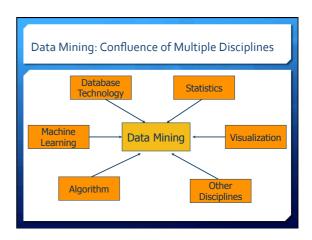

"Route documents to most likely interested parties"
+ English or non-english?
+ Domestic or Foreign?


Training Data tool produces


Groups

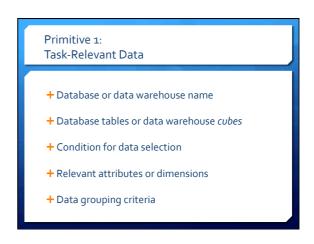

Classifier

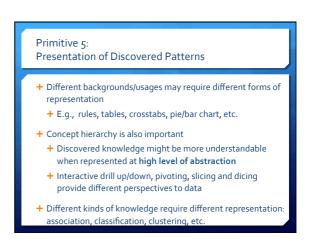

CSSOUD



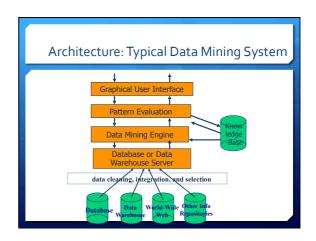
Data Mining Functionalities (2) + Cluster analysis + Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns + Maximizing intra-class similarity & minimizing interclass similarity + Outlier analysis + Outlier: Data object that does not comply with the general behavior of the data + Noise or exception? + Trend and evolution analysis + Trend and deviation: e.g., regression analysis + Sequential pattern mining, periodicity analysis + Similarity-based analysis

Are All the "Discovered" Patterns Interesting? + Data mining may generate thousands of patterns: Not all of them are interesting + Suggested approach: Human-centered, query-based, focused mining + Interestingness measures + A pattern is interesting if it is easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm + Objective vs. subjective interestingness measures + Objective: based on statistics and structures of patterns, e.g., support, confidence, etc. + Subjective: based on user's belief in the data, e.g., unexpectedness, novelty, actionability, etc.


Can We Find All and Only Interesting Patterns? + Find all the interesting patterns: Completeness + Can a data mining system find all the interesting patterns? + Heuristic vs. exhaustive search + Association vs. classification vs. clustering + Search for only interesting patterns: An optimization problem + Can a data mining system find only the interesting patterns? + Approaches + First general all the patterns and then filter out the uninteresting ones. + Generate only the interesting patterns—mining query optimization


Primitives that Define a Data Mining Task + Task-relevant data + Type of knowledge to be mined + Background knowledge + Pattern interestingness measurements (?) + Visualization/presentation of discovered patterns

Primitive 2: Types of Knowledge to Be Mined + Characterization (Categories) + Discrimination + Association + Classification/prediction + Clustering + Outlier analysis + Other data mining tasks


Primitive 3: Background Knowledge + Schema hierarchy (taxonomy) + E.g., street < city < province_or_state < country + Set-grouping hierarchy + E.g., {20-39} = young, {40-59} = middle_aged + Operation-derived hierarchy + email address: hagonzal@cs.uiuc.edu login-name < department < university < country + Rule-based hierarchy + low_profit_margin (X) <= price(X, P₃) and cost (X, P₃) and (P₃ - P₂) < \$50

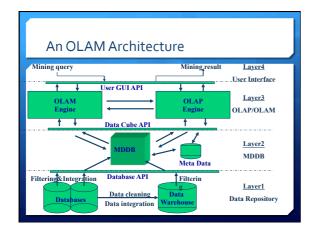
Why Data Mining Query Language?

+ Automated vs. query-driven?
+ Finding all the patterns autonomously in a database?—
unrealistic because the patterns could be too many but
uninteresting
+ Data mining should be an interactive process
+ User directs what to be mined
+ Users must be provided with a set of primitives to be used to
communicate with the data mining system
+ Incorporating these primitives in a data mining query language
+ More flexible user interaction
+ Foundation for design of graphical user interface
+ Standardization of data mining industry and practice

State of Commercial/Research Practice

- + Increasing use of data mining systems in financial community, marketing sectors, retailing
- + Still have major problems with large, dynamic sets of data (need better integration with the databases)
 - COTS data mining packages perform specialized learning on small subset of data
- Most research emphasizes machine learning; little emphasis on database side (especially text)
- + People achieving results are not likely to share knowledge

Related Techniques: OLAP On-Line Analytical Processing


- On-Line Analytical Processing tools provide the ability to pose statistical and summary queries interactively (traditional On-Line Transaction Processing (OLTP) databases may take minutes or even hours to answer these queries)
- + Advantages relative to data mining
- + Can obtain a wider variety of results
- + Generally faster to obtain results
- + Disadvantages relative to data mining

 - User must "ask the right question"
 Generally used to determine high-level statistical summaries, rather than specific relationships among instances

OLAP: On-Line Analytical Processing OLAP Functionality Profit Values + Dimension selection + slice & dice Sales + Rotation + allows change in perspective OLAP + Filtration Year + Hierarchies by Month **Product Class** + drill-downs to lower levels by Product Name + roll-ups to higher levels

Integration of Data Mining and Data Warehousing

- + Data mining systems, DBMS, Data warehouse systems
 - + No coupling, loose-coupling, semi-tight-coupling, tight-coupling
- + On-line analytical mining data
- + integration of mining and OLAP technologies
- + Interactive mining multi-level knowledge
 - Necessity of mining knowledge and patterns at different levels of abstraction by drilling/rolling, pivoting, slicing/dicing, etc.
- + Integration of multiple mining functions
- Characterized classification, first clustering and then association

Integration of Data Mining and **Data Warehousing**

- + Data mining systems, DBMS, Data warehouse systems coupling
 - + No coupling, loose-coupling, semi-tight-coupling, tight-coupling
- On-line analytical mining data
 - + integration of mining and Online Analytical Processing (OLAP) technologies
- + Interactive mining multi-level knowledge
 - + Necessity of mining knowledge and patterns at different levels of abstraction by drilling/rolling, pivoting, slicing/dicing, etc.
- Integration of multiple mining functions
 - Characterized classification, first clustering and then association

Coupling Data Mining with DB/DW Systems

- + No coupling—flat file processing, not recommended
- + Loose coupling
- + Fetching data from DB/DW
- + Semi-tight coupling—enhanced DM performance
 - Provide efficient implement a few data mining primitives in a DB/DW system, e.g., sorting, indexing, aggregation, histogram analysis, multiway join, precomputation of some stat functions
- + Tight coupling—A uniform information processing environment
 - + DM is smoothly integrated into a DB/DW system, mining query is optimized based on mining query, indexing, etc.

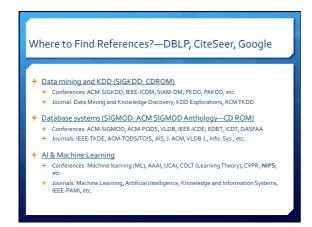
Mining methodology

- Mining different kinds of knowledge from diverse data types, e.g., bio, stream, Web
- + Performance: efficiency, effectiveness, and scalability
- + Pattern evaluation: the interestingness problem
- + Incorporation of background knowledge
 - + (constraints, taxonomy)
- + Handling noise and incomplete data (preprocessing)
- + Parallel, distributed and incremental mining methods
- + Integration of the discovered knowledge with existing one

+ User interaction

- + Data mining query languages and ad-hoc mining
- + Expression and visualization of data mining results
- + Interactive mining of knowledge at multiple levels of abstraction
- + Applications and social impacts
 - + Domain-specific data mining & invisible data mining
 - + Protection of data security, integrity, and privacy

Summary


- + Data mining: discovering interesting patterns from large amounts of data (DB)
- A natural evolution of database technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration (Data Warehouse), data selection (Data Mart), transformation, data mining, pattern evaluation, and knowledge presentation
- + Mining can be performed in a variety of information repositories
- Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.
 - + Subjective, requires expert knowledge
- + Data mining systems and architecture

A Brief History of Data Mining Society

- + 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - + Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- + 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
 - + Journal of Data Mining and Knowledge Discovery (1997)
- + ACM SIGKDD conferences since 1998 and SIGKDD Explorations
- + More conferences on data mining
 - + PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.

Conferences and Journals on Data Mining

- + ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
- + SIAM Data Mining Conf. (SDM)
- + (IEEE) Int. Conf. on Data Mining (ICDM)
- Conf. on Principles and practices of Knowledge Discovery and Data Mining (PKDD)
- Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)
- Journals:
 - Data Mining and Knowledge Discovery (DAMI or DMKD)
 - IEEE Trans. On Knowledge and Data Eng. (TKDE)
 - KDD Explorations
 - ACM Trans. on KDD

